Steurer, David
Low degree conjecture implies sharp computational thresholds in stochastic block model
Ding, Jingqiu, Hua, Yiding, Slot, Lucas, Steurer, David
We investigate implications of the (extended) low-degree conjecture (recently formalized in [MW23]) in the context of the symmetric stochastic block model. Assuming the conjecture holds, we establish that no polynomial-time algorithm can weakly recover community labels below the Kesten-Stigum (KS) threshold. In particular, we rule out polynomial-time estimators that, with constant probability, achieve correlation with the true communities that is significantly better than random. Whereas, above the KS threshold, polynomial-time algorithms are known to achieve constant correlation with the true communities with high probability[Mas14,AS15]. To our knowledge, we provide the first rigorous evidence for the sharp transition in recovery rate for polynomial-time algorithms at the KS threshold. Notably, under a stronger version of the low-degree conjecture, our lower bound remains valid even when the number of blocks diverges. Furthermore, our results provide evidence of a computational-to-statistical gap in learning the parameters of stochastic block models. In contrast to prior work, which either (i) rules out polynomial-time algorithms for hypothesis testing with 1-o(1) success probability [Hopkins18, BBK+21a] under the low-degree conjecture, or (ii) rules out low-degree polynomials for learning the edge connection probability matrix [LG23], our approach provides stronger lower bounds on the recovery and learning problem. Our proof combines low-degree lower bounds from [Hopkins18, BBK+21a] with graph splitting and cross-validation techniques. In order to rule out general recovery algorithms, we employ the correlation preserving projection method developed in [HS17].
Outlier-robust Mean Estimation near the Breakdown Point via Sum-of-Squares
Chen, Hongjie, Sridharan, Deepak Narayanan, Steurer, David
We revisit the problem of estimating the mean of a high-dimensional distribution in the presence of an $\varepsilon$-fraction of adversarial outliers. When $\varepsilon$ is at most some sufficiently small constant, previous works can achieve optimal error rate efficiently \cite{diakonikolas2018robustly, kothari2018robust}. As $\varepsilon$ approaches the breakdown point $\frac{1}{2}$, all previous algorithms incur either sub-optimal error rates or exponential running time. In this paper we give a new analysis of the canonical sum-of-squares program introduced in \cite{kothari2018robust} and show that this program efficiently achieves optimal error rate for all $\varepsilon \in[0,\frac{1}{2})$. The key ingredient for our results is a new identifiability proof for robust mean estimation that focuses on the overlap between the distributions instead of their statistical distance as in previous works. We capture this proof within the sum-of-squares proof system, thus obtaining efficient algorithms using the sum-of-squares proofs to algorithms paradigm \cite{raghavendra2018high}.
Dimension Reduction via Sum-of-Squares and Improved Clustering Algorithms for Non-Spherical Mixtures
Anderson, Prashanti, Bafna, Mitali, Buhai, Rares-Darius, Kothari, Pravesh K., Steurer, David
We develop a new approach for clustering non-spherical (i.e., arbitrary component covariances) Gaussian mixture models via a subroutine, based on the sum-of-squares method, that finds a low-dimensional separation-preserving projection of the input data. Our method gives a non-spherical analog of the classical dimension reduction, based on singular value decomposition, that forms a key component of the celebrated spherical clustering algorithm of Vempala and Wang [VW04] (in addition to several other applications). As applications, we obtain an algorithm to (1) cluster an arbitrary total-variation separated mixture of $k$ centered (i.e., zero-mean) Gaussians with $n\geq \operatorname{poly}(d) f(w_{\min}^{-1})$ samples and $\operatorname{poly}(n)$ time, and (2) cluster an arbitrary total-variation separated mixture of $k$ Gaussians with identical but arbitrary unknown covariance with $n \geq d^{O(\log w_{\min}^{-1})} f(w_{\min}^{-1})$ samples and $n^{O(\log w_{\min}^{-1})}$ time. Here, $w_{\min}$ is the minimum mixing weight of the input mixture, and $f$ does not depend on the dimension $d$. Our algorithms naturally extend to tolerating a dimension-independent fraction of arbitrary outliers. Before this work, the techniques in the state-of-the-art non-spherical clustering algorithms needed $d^{O(k)} f(w_{\min}^{-1})$ time and samples for clustering such mixtures. Our results may come as a surprise in the context of the $d^{\Omega(k)}$ statistical query lower bound [DKS17] for clustering non-spherical Gaussian mixtures. While this result is usually thought to rule out $d^{o(k)}$ cost algorithms for the problem, our results show that the lower bounds can in fact be circumvented for a remarkably general class of Gaussian mixtures.
Private Edge Density Estimation for Random Graphs: Optimal, Efficient and Robust
Chen, Hongjie, Ding, Jingqiu, Hua, Yiding, Steurer, David
We give the first polynomial-time, differentially node-private, and robust algorithm for estimating the edge density of Erd\H{o}s-R\'enyi random graphs and their generalization, inhomogeneous random graphs. We further prove information-theoretical lower bounds, showing that the error rate of our algorithm is optimal up to logarithmic factors. Previous algorithms incur either exponential running time or suboptimal error rates. Two key ingredients of our algorithm are (1) a new sum-of-squares algorithm for robust edge density estimation, and (2) the reduction from privacy to robustness based on sum-of-squares exponential mechanisms due to Hopkins et al. (STOC 2023).
Private estimation algorithms for stochastic block models and mixture models
Chen, Hongjie, Cohen-Addad, Vincent, d'Orsi, Tommaso, Epasto, Alessandro, Imola, Jacob, Steurer, David, Tiegel, Stefan
We introduce general tools for designing efficient private estimation algorithms, in the high-dimensional settings, whose statistical guarantees almost match those of the best known non-private algorithms. To illustrate our techniques, we consider two problems: recovery of stochastic block models and learning mixtures of spherical Gaussians. For the former, we present the first efficient $(\epsilon, \delta)$-differentially private algorithm for both weak recovery and exact recovery. Previously known algorithms achieving comparable guarantees required quasi-polynomial time. For the latter, we design an $(\epsilon, \delta)$-differentially private algorithm that recovers the centers of the $k$-mixture when the minimum separation is at least $ O(k^{1/t}\sqrt{t})$. For all choices of $t$, this algorithm requires sample complexity $n\geq k^{O(1)}d^{O(t)}$ and time complexity $(nd)^{O(t)}$. Prior work required minimum separation at least $O(\sqrt{k})$ as well as an explicit upper bound on the Euclidean norm of the centers.
Robust Mean Estimation Without Moments for Symmetric Distributions
Novikov, Gleb, Steurer, David, Tiegel, Stefan
We study the problem of robustly estimating the mean or location parameter without moment assumptions. We show that for a large class of symmetric distributions, the same error as in the Gaussian setting can be achieved efficiently. The distributions we study include products of arbitrary symmetric one-dimensional distributions, such as product Cauchy distributions, as well as elliptical distributions. For product distributions and elliptical distributions with known scatter (covariance) matrix, we show that given an $\varepsilon$-corrupted sample, we can with probability at least $1-\delta$ estimate its location up to error $O(\varepsilon \sqrt{\log(1/\varepsilon)})$ using $\tfrac{d\log(d) + \log(1/\delta)}{\varepsilon^2 \log(1/\varepsilon)}$ samples. This result matches the best-known guarantees for the Gaussian distribution and known SQ lower bounds (up to the $\log(d)$ factor). For elliptical distributions with unknown scatter (covariance) matrix, we propose a sequence of efficient algorithms that approaches this optimal error. Specifically, for every $k \in \mathbb{N}$, we design an estimator using time and samples $\tilde{O}({d^k})$ achieving error $O(\varepsilon^{1-\frac{1}{2k}})$. This matches the error and running time guarantees when assuming certifiably bounded moments of order up to $k$. For unknown covariance, such error bounds of $o(\sqrt{\varepsilon})$ are not even known for (general) sub-Gaussian distributions. Our algorithms are based on a generalization of the well-known filtering technique. We show how this machinery can be combined with Huber-loss-based techniques to work with projections of the noise that behave more nicely than the initial noise. Moreover, we show how SoS proofs can be used to obtain algorithmic guarantees even for distributions without a first moment. We believe that this approach may find other applications in future works.
Reaching Kesten-Stigum Threshold in the Stochastic Block Model under Node Corruptions
Ding, Jingqiu, d'Orsi, Tommaso, Hua, Yiding, Steurer, David
We study robust community detection in the context of node-corrupted stochastic block model, where an adversary can arbitrarily modify all the edges incident to a fraction of the $n$ vertices. We present the first polynomial-time algorithm that achieves weak recovery at the Kesten-Stigum threshold even in the presence of a small constant fraction of corrupted nodes. Prior to this work, even state-of-the-art robust algorithms were known to break under such node corruption adversaries, when close to the Kesten-Stigum threshold. We further extend our techniques to the $Z_2$ synchronization problem, where our algorithm reaches the optimal recovery threshold in the presence of similar strong adversarial perturbations. The key ingredient of our algorithm is a novel identifiability proof that leverages the push-out effect of the Grothendieck norm of principal submatrices.
Beyond Parallel Pancakes: Quasi-Polynomial Time Guarantees for Non-Spherical Gaussian Mixtures
Buhai, Rares-Darius, Steurer, David
We consider mixtures of $k\geq 2$ Gaussian components with unknown means and unknown covariance (identical for all components) that are well-separated, i.e., distinct components have statistical overlap at most $k^{-C}$ for a large enough constant $C\ge 1$. Previous statistical-query lower bounds [DKS17] give formal evidence that even distinguishing such mixtures from (pure) Gaussians may be exponentially hard (in $k$). We show that this kind of hardness can only appear if mixing weights are allowed to be exponentially small, and that for polynomially lower bounded mixing weights non-trivial algorithmic guarantees are possible in quasi-polynomial time. Concretely, we develop an algorithm based on the sum-of-squares method with running time quasi-polynomial in the minimum mixing weight. The algorithm can reliably distinguish between a mixture of $k\ge 2$ well-separated Gaussian components and a (pure) Gaussian distribution. As a certificate, the algorithm computes a bipartition of the input sample that separates a pair of mixture components, i.e., both sides of the bipartition contain most of the sample points of at least one component. For the special case of colinear means, our algorithm outputs a $k$ clustering of the input sample that is approximately consistent with the components of the mixture. A significant challenge for our results is that they appear to be inherently sensitive to small fractions of adversarial outliers unlike most previous results for Gaussian mixtures. The reason is that such outliers can simulate exponentially small mixing weights even for mixtures with polynomially lower bounded mixing weights. A key technical ingredient is a characterization of separating directions for well-separated Gaussian components in terms of ratios of polynomials that correspond to moments of two carefully chosen orders logarithmic in the minimum mixing weight.
Consistent Estimation for PCA and Sparse Regression with Oblivious Outliers
d'Orsi, Tommaso, Liu, Chih-Hung, Nasser, Rajai, Novikov, Gleb, Steurer, David, Tiegel, Stefan
We develop machinery to design efficiently computable and consistent estimators, achieving estimation error approaching zero as the number of observations grows, when facing an oblivious adversary that may corrupt responses in all but an $\alpha$ fraction of the samples. As concrete examples, we investigate two problems: sparse regression and principal component analysis (PCA). For sparse regression, we achieve consistency for optimal sample size $n\gtrsim (k\log d)/\alpha^2$ and optimal error rate $O(\sqrt{(k\log d)/(n\cdot \alpha^2)})$ where $n$ is the number of observations, $d$ is the number of dimensions and $k$ is the sparsity of the parameter vector, allowing the fraction of inliers to be inverse-polynomial in the number of samples. Prior to this work, no estimator was known to be consistent when the fraction of inliers $\alpha$ is $o(1/\log \log n)$, even for (non-spherical) Gaussian design matrices. Results holding under weak design assumptions and in the presence of such general noise have only been shown in dense setting (i.e., general linear regression) very recently by d'Orsi et al. [dNS21]. In the context of PCA, we attain optimal error guarantees under broad spikiness assumptions on the parameter matrix (usually used in matrix completion). Previous works could obtain non-trivial guarantees only under the assumptions that the measurement noise corresponding to the inliers is polynomially small in $n$ (e.g., Gaussian with variance $1/n^2$). To devise our estimators, we equip the Huber loss with non-smooth regularizers such as the $\ell_1$ norm or the nuclear norm, and extend d'Orsi et al.'s approach [dNS21] in a novel way to analyze the loss function. Our machinery appears to be easily applicable to a wide range of estimation problems.
SoS Degree Reduction with Applications to Clustering and Robust Moment Estimation
Steurer, David, Tiegel, Stefan
The Sum-of-Squares hierarchy is a hierarchy of semidefinite programs which has proven to be a powerful tool in the theory of approximation algorithms [GW95, ARV09]. More recently it has also given rise to a flurry of algorithms for estimation problems such as various tensor [BKS15, BM16, MSS16, HSS15], clustering [HL18], and robust estimation problems [KSS18, KKK19, KKM18], often yielding significant improvements over existing algorithms and in some cases even the first efficient ones. The hierarchy is based on the sum-of-squares proof system which on a high-level allows to argue about non-negativity of polynomials by manipulating a set of polynomial inequalities. Most importantly, it can be algorithmically exploited in the sense that certain proofs in this proof system directly certify approximation guarantees of algorithms based on the hierarchy. The running time of these algorithms depends mainly on the number of variables involved and the maximum degree of the polynomials occurring in the inequalities mentioned above. In general using a higher degree often leads to more accurate solutions but also requires more time. In this work, we show how we can significantly reduce the degree of a wide range of sum-of-squares proofs in an almost black-box manner while still certifying similar guarantees and thus giving a direct speedup for concrete algorithms. As two examples we will consider estimation algorithms for clustering and outlier-robust moment estimation. We hope that this technique can inform future algorithms based on the sum-of-squares hierarchy.