Goto

Collaborating Authors

 Stensmo, Magnus


Learning Decision Theoretic Utilities through Reinforcement Learning

Neural Information Processing Systems

Probability models can be used to predict outcomes and compensate for missing data, but even a perfect model cannot be used to make decisions unless the utility of the outcomes, or preferences between them, are also provided. This arises in many real-world problems, such as medical diagnosis, where the cost of the test as well as the expected improvement in the outcome must be considered. Relatively little work has been done on learning the utilities of outcomes for optimal decision making. In this paper, we show how temporal-difference reinforcement learning (TO(Aยป can be used to determine decision theoretic utilities within the context of a mixture model and apply this new approach to a problem in medical diagnosis. TO(A) learning of utilities reduces the number of tests that have to be done to achieve the same level of performance compared with the probability model alone, which results in significant cost savings and increased efficiency.


Learning Decision Theoretic Utilities through Reinforcement Learning

Neural Information Processing Systems

Probability models can be used to predict outcomes and compensate for missing data, but even a perfect model cannot be used to make decisions unless the utility of the outcomes, or preferences between them, are also provided. This arises in many real-world problems, such as medical diagnosis, where the cost of the test as well as the expected improvement in the outcome must be considered. Relatively little work has been done on learning the utilities of outcomes for optimal decision making. In this paper, we show how temporal-difference reinforcement learning (TO(Aยป can be used to determine decision theoretic utilities within the context of a mixture model and apply this new approach to a problem in medical diagnosis. TO(A) learning of utilities reduces the number of tests that have to be done to achieve the same level of performance compared with the probability model alone, which results in significant cost savings and increased efficiency.


Learning Decision Theoretic Utilities through Reinforcement Learning

Neural Information Processing Systems

Probability models can be used to predict outcomes and compensate for missing data, but even a perfect model cannot be used to make decisions unless the utility of the outcomes, or preferences between them, are also provided. This arises in many real-world problems, such as medical diagnosis, wherethe cost of the test as well as the expected improvement in the outcome must be considered. Relatively little work has been done on learning the utilities of outcomes for optimal decision making. In this paper, we show how temporal-difference reinforcement learning (TO(Aยป can be used to determine decision theoretic utilities within the context of a mixture model and apply this new approach to a problem in medical diagnosis. TO(A) learning of utilities reduces the number of tests that have to be done to achieve the same level of performance compared with the probability model alone, which results in significant cost savings and increased efficiency.


A Mixture Model System for Medical and Machine Diagnosis

Neural Information Processing Systems

Diagnosis of human disease or machine fault is a missing data problem since many variables are initially unknown. Additional information needs to be obtained. The j oint probability distribution of the data can be used to solve this problem. We model this with mixture models whose parameters are estimated by the EM algorithm. This gives the benefit that missing data in the database itself can also be handled correctly. The request for new information to refine the diagnosis is performed using the maximum utility principle. Since the system is based on learning it is domain independent and less labor intensive than expert systems or probabilistic networks. An example using a heart disease database is presented.


A Mixture Model System for Medical and Machine Diagnosis

Neural Information Processing Systems

Diagnosis of human disease or machine fault is a missing data problem since many variables are initially unknown. Additional information needs to be obtained. The j oint probability distribution of the data can be used to solve this problem. We model this with mixture models whose parameters are estimated by the EM algorithm. This gives the benefit that missing data in the database itself can also be handled correctly. The request for new information to refine the diagnosis is performed using the maximum utility principle. Since the system is based on learning it is domain independent and less labor intensive than expert systems or probabilistic networks. An example using a heart disease database is presented.


A Mixture Model System for Medical and Machine Diagnosis

Neural Information Processing Systems

Diagnosis of human disease or machine fault is a missing data problem since many variables are initially unknown. Additional information needs to be obtained. The j oint probability distribution of the data can be used to solve this problem. We model this with mixture models whose parameters are estimated by the EM algorithm. This gives the benefit that missing data in the database itself can also be handled correctly. The request for new information to refine the diagnosis is performed using the maximum utility principle. Since the system is based on learning it is domain independent and less labor intensive than expert systems or probabilistic networks. An example using a heart disease database is presented.