Goto

Collaborating Authors

 Stefanovici, Ioan


Managed-Retention Memory: A New Class of Memory for the AI Era

arXiv.org Artificial Intelligence

AI clusters today are one of the major uses of High Bandwidth Memory (HBM). However, HBM is suboptimal for AI workloads for several reasons. Analysis shows HBM is overprovisioned on write performance, but underprovisioned on density and read bandwidth, and also has significant energy per bit overheads. It is also expensive, with lower yield than DRAM due to manufacturing complexity. We propose a new memory class: Managed-Retention Memory (MRM), which is more optimized to store key data structures for AI inference workloads. We believe that MRM may finally provide a path to viability for technologies that were originally proposed to support Storage Class Memory (SCM). These technologies traditionally offered long-term persistence (10+ years) but provided poor IO performance and/or endurance. MRM makes different trade-offs, and by understanding the workload IO patterns, MRM foregoes long-term data retention and write performance for better potential performance on the metrics important for these workloads.


Efficient data transport over multimode light-pipes with Megapixel images using differentiable ray tracing and Machine-learning

arXiv.org Artificial Intelligence

Retrieving images transmitted through multi-mode fibers is of growing interest, thanks to their ability to confine and transport light efficiently in a compact system. Here, we demonstrate machine-learning-based decoding of large-scale digital images (pages), maximizing page capacity for optical storage applications. Using a millimeter-sized square cross-section waveguide, we image an 8-bit spatial light modulator, presenting data as a matrix of symbols. Normally, decoders will incur a prohibitive O(n^2) computational scaling to decode n symbols in spatially scrambled data. However, by combining a digital twin of the setup with a U-Net, we can retrieve up to 66 kB using efficient convolutional operations only. We compare trainable ray-tracing-based with eigenmode-based twins and show the former to be superior thanks to its ability to overcome the simulation-to-experiment gap by adjusting to optical imperfections. We train the pipeline end-to-end using a differentiable mutual-information estimator based on the von-Mises distribution, generally applicable to phase-coding channels.