Stefanov, Kalin
Human Brain Exhibits Distinct Patterns When Listening to Fake Versus Real Audio: Preliminary Evidence
Salehi, Mahsa, Stefanov, Kalin, Shareghi, Ehsan
In this paper we study the variations in human brain activity when listening to real and fake audio. Our preliminary results suggest that the representations learned by a state-of-the-art deepfake audio detection algorithm, do not exhibit clear distinct patterns between real and fake audio. In contrast, human brain activity, as measured by EEG, displays distinct patterns when individuals are exposed to fake versus real audio. This preliminary evidence enables future research directions in areas such as deepfake audio detection.
GTA-HDR: A Large-Scale Synthetic Dataset for HDR Image Reconstruction
Barua, Hrishav Bakul, Stefanov, Kalin, Wong, KokSheik, Dhall, Abhinav, Krishnasamy, Ganesh
High Dynamic Range (HDR) content (i.e., images and videos) has a broad range of applications. However, capturing HDR content from real-world scenes is expensive and time-consuming. Therefore, the challenging task of reconstructing visually accurate HDR images from their Low Dynamic Range (LDR) counterparts is gaining attention in the vision research community. A major challenge in this research problem is the lack of datasets, which capture diverse scene conditions (e.g., lighting, shadows, weather, locations, landscapes, objects, humans, buildings) and various image features (e.g., color, contrast, saturation, hue, luminance, brightness, radiance). To address this gap, in this paper, we introduce GTA-HDR, a large-scale synthetic dataset of photo-realistic HDR images sampled from the GTA-V video game. We perform thorough evaluation of the proposed dataset, which demonstrates significant qualitative and quantitative improvements of the state-of-the-art HDR image reconstruction methods. Furthermore, we demonstrate the effectiveness of the proposed dataset and its impact on additional computer vision tasks including 3D human pose estimation, human body part segmentation, and holistic scene segmentation. The dataset, data collection pipeline, and evaluation code are available at: https://github.com/HrishavBakulBarua/GTA-HDR.
HistoHDR-Net: Histogram Equalization for Single LDR to HDR Image Translation
Barua, Hrishav Bakul, Krishnasamy, Ganesh, Wong, KokSheik, Dhall, Abhinav, Stefanov, Kalin
High Dynamic Range (HDR) imaging aims to replicate the high visual quality and clarity of real-world scenes. Due to the high costs associated with HDR imaging, the literature offers various data-driven methods for HDR image reconstruction from Low Dynamic Range (LDR) counterparts. A common limitation of these approaches is missing details in regions of the reconstructed HDR images, which are over- or under-exposed in the input LDR images. To this end, we propose a simple and effective method, HistoHDR-Net, to recover the fine details (e.g., color, contrast, saturation, and brightness) of HDR images via a fusion-based approach utilizing histogram-equalized LDR images along with self-attention guidance. Our experiments demonstrate the efficacy of the proposed approach over the state-of-art methods.
ArtHDR-Net: Perceptually Realistic and Accurate HDR Content Creation
Barua, Hrishav Bakul, Krishnasamy, Ganesh, Wong, KokSheik, Stefanov, Kalin, Dhall, Abhinav
High Dynamic Range (HDR) content creation has become an important topic for modern media and entertainment sectors, gaming and Augmented/Virtual Reality industries. Many methods have been proposed to recreate the HDR counterparts of input Low Dynamic Range (LDR) images/videos given a single exposure or multi-exposure LDRs. The state-of-the-art methods focus primarily on the preservation of the reconstruction's structural similarity and the pixel-wise accuracy. However, these conventional approaches do not emphasize preserving the artistic intent of the images in terms of human visual perception, which is an essential element in media, entertainment and gaming. In this paper, we attempt to study and fill this gap. We propose an architecture called ArtHDR-Net based on a Convolutional Neural Network that uses multi-exposed LDR features as input. Experimental results show that ArtHDR-Net can achieve state-of-the-art performance in terms of the HDR-VDP-2 score (i.e., mean opinion score index) while reaching competitive performance in terms of PSNR and SSIM.
S-HR-VQVAE: Sequential Hierarchical Residual Learning Vector Quantized Variational Autoencoder for Video Prediction
Adiban, Mohammad, Stefanov, Kalin, Siniscalchi, Sabato Marco, Salvi, Giampiero
We address the video prediction task by putting forth a novel model that combines (i) our recently proposed hierarchical residual vector quantized variational autoencoder (HR-VQVAE), and (ii) a novel spatiotemporal PixelCNN (ST-PixelCNN). We refer to this approach as a sequential hierarchical residual learning vector quantized variational autoencoder (S-HR-VQVAE). By leveraging the intrinsic capabilities of HR-VQVAE at modeling still images with a parsimonious representation, combined with the ST-PixelCNN's ability at handling spatiotemporal information, S-HR-VQVAE can better deal with chief challenges in video prediction. These include learning spatiotemporal information, handling high dimensional data, combating blurry prediction, and implicit modeling of physical characteristics. Extensive experimental results on the KTH Human Action and Moving-MNIST tasks demonstrate that our model compares favorably against top video prediction techniques both in quantitative and qualitative evaluations despite a much smaller model size. Finally, we boost S-HR-VQVAE by proposing a novel training method to jointly estimate the HR-VQVAE and ST-PixelCNN parameters.
Self-Supervised Vision-Based Detection of the Active Speaker as a Prerequisite for Socially-Aware Language Acquisition
Stefanov, Kalin, Beskow, Jonas, Salvi, Giampiero
This paper presents a self-supervised method for detecting the active speaker in a multi-person spoken interaction scenario. We argue that this capability is a fundamental prerequisite for any artificial cognitive system attempting to acquire language in social settings. Our methods are able to detect an arbitrary number of possibly overlapping active speakers based exclusively on visual information about their face. Our methods do not rely on external annotations, thus complying with cognitive development. Instead, they use information from the auditory modality to support learning in the visual domain. The methods have been extensively evaluated on a large multi-person face-to-face interaction dataset. The results reach an accuracy of 80% on a multi-speaker setting. We believe this system represents an essential component of any artificial cognitive system or robotic platform engaging in social interaction.