Goto

Collaborating Authors

 Stark, Michael


GenCHiP: Generating Robot Policy Code for High-Precision and Contact-Rich Manipulation Tasks

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have been successful at generating robot policy code, but so far these results have been limited to high-level tasks that do not require precise movement. It is an open question how well such approaches work for tasks that require reasoning over contact forces and working within tight success tolerances. We find that, with the right action space, LLMs are capable of successfully generating policies for a variety of contact-rich and high-precision manipulation tasks, even under noisy conditions, such as perceptual errors or grasping inaccuracies. Specifically, we reparameterize the action space to include compliance with constraints on the interaction forces and stiffnesses involved in reaching a target pose. We validate this approach on subtasks derived from the Functional Manipulation Benchmark (FMB) and NIST Task Board Benchmarks. Exposing this action space alongside methods for estimating object poses improves policy generation with an LLM by greater than 3x and 4x when compared to non-compliant action spaces


RT-Sketch: Goal-Conditioned Imitation Learning from Hand-Drawn Sketches

arXiv.org Artificial Intelligence

Natural language and images are commonly used as goal representations in goal-conditioned imitation learning (IL). However, natural language can be ambiguous and images can be over-specified. In this work, we propose hand-drawn sketches as a modality for goal specification in visual imitation learning. Sketches are easy for users to provide on the fly like language, but similar to images they can also help a downstream policy to be spatially-aware and even go beyond images to disambiguate task-relevant from task-irrelevant objects. We present RT-Sketch, a goal-conditioned policy for manipulation that takes a hand-drawn sketch of the desired scene as input, and outputs actions. We train RT-Sketch on a dataset of paired trajectories and corresponding synthetically generated goal sketches. We evaluate this approach on six manipulation skills involving tabletop object rearrangements on an articulated countertop. Experimentally we find that RT-Sketch is able to perform on a similar level to image or language-conditioned agents in straightforward settings, while achieving greater robustness when language goals are ambiguous or visual distractors are present. Additionally, we show that RT-Sketch has the capacity to interpret and act upon sketches with varied levels of specificity, ranging from minimal line drawings to detailed, colored drawings. For supplementary material and videos, please refer to our website: http://rt-sketch.github.io.


Behavior Is Everything: Towards Representing Concepts with Sensorimotor Contingencies

AAAI Conferences

AI has seen remarkable progress in recent years, due to a switch from hand-designed shallow representations, to learned deep representations. While these methods excel with plentiful training data, they are still far from the human ability to learn concepts from just a few examples by reusing previously learned conceptual knowledge in new contexts. We argue that this gap might come from a fundamental misalignment between human and typical AI representations: while the former are grounded in rich sensorimotor experience, the latter are typically passive and limited to a few modalities such as vision and text. We take a step towards closing this gap by proposing an interactive, behavior-based model that represents concepts using sensorimotor contingencies grounded in an agent's experience. On a novel conceptual learning and benchmark suite, we demonstrate that conceptually meaningful behaviors can be learned, given supervision via training curricula.