Not enough data to create a plot.
Try a different view from the menu above.
Stanovsky, Gabriel
Are Layout-Infused Language Models Robust to Layout Distribution Shifts? A Case Study with Scientific Documents
Chen, Catherine, Shen, Zejiang, Klein, Dan, Stanovsky, Gabriel, Downey, Doug, Lo, Kyle
Recent work has shown that infusing layout features into language models (LMs) improves processing of visually-rich documents such as scientific papers. Layout-infused LMs are often evaluated on documents with familiar layout features (e.g., papers from the same publisher), but in practice models encounter documents with unfamiliar distributions of layout features, such as new combinations of text sizes and styles, or new spatial configurations of textual elements. In this work we test whether layout-infused LMs are robust to layout distribution shifts. As a case study we use the task of scientific document structure recovery, segmenting a scientific paper into its structural categories (e.g., "title", "caption", "reference"). To emulate distribution shifts that occur in practice we re-partition the GROTOAP2 dataset. We find that under layout distribution shifts model performance degrades by up to 20 F1. Simple training strategies, such as increasing training diversity, can reduce this degradation by over 35% relative F1; however, models fail to reach in-distribution performance in any tested out-of-distribution conditions. This work highlights the need to consider layout distribution shifts during model evaluation, and presents a methodology for conducting such evaluations.
You Can Have Your Data and Balance It Too: Towards Balanced and Efficient Multilingual Models
Limisiewicz, Tomasz, Malkin, Dan, Stanovsky, Gabriel
Multilingual models have been widely used for cross-lingual transfer to low-resource languages. However, the performance on these languages is hindered by their underrepresentation in the pretraining data. To alleviate this problem, we propose a novel multilingual training technique based on teacher-student knowledge distillation. In this setting, we utilize monolingual teacher models optimized for their language. We use those teachers along with balanced (sub-sampled) data to distill the teachers' knowledge into a single multilingual student. Our method outperforms standard training methods in low-resource languages and retrains performance on high-resource languages while using the same amount of data. If applied widely, our approach can increase the representation of low-resource languages in NLP systems.
Comparing Humans and Models on a Similar Scale: Towards Cognitive Gender Bias Evaluation in Coreference Resolution
Lior, Gili, Stanovsky, Gabriel
Spurious correlations were found to be an important factor explaining model performance in various NLP tasks (e.g., gender or racial artifacts), often considered to be ''shortcuts'' to the actual task. However, humans tend to similarly make quick (and sometimes wrong) predictions based on societal and cognitive presuppositions. In this work we address the question: can we quantify the extent to which model biases reflect human behaviour? Answering this question will help shed light on model performance and provide meaningful comparisons against humans. We approach this question through the lens of the dual-process theory for human decision-making. This theory differentiates between an automatic unconscious (and sometimes biased) ''fast system'' and a ''slow system'', which when triggered may revisit earlier automatic reactions. We make several observations from two crowdsourcing experiments of gender bias in coreference resolution, using self-paced reading to study the ''fast'' system, and question answering to study the ''slow'' system under a constrained time setting. On real-world data humans make $\sim$3\% more gender-biased decisions compared to models, while on synthetic data models are $\sim$12\% more biased.
The Perfect Victim: Computational Analysis of Judicial Attitudes towards Victims of Sexual Violence
Habba, Eliya, Keydar, Renana, Bareket, Dan, Stanovsky, Gabriel
We develop computational models to analyze court statements in order to assess judicial attitudes toward victims of sexual violence in the Israeli court system. The study examines the resonance of "rape myths" in the criminal justice system's response to sex crimes, in particular in judicial assessment of victim's credibility. We begin by formulating an ontology for evaluating judicial attitudes toward victim's credibility, with eight ordinal labels and binary categorizations. Second, we curate a manually annotated dataset for judicial assessments of victim's credibility in the Hebrew language, as well as a model that can extract credibility labels from court cases. The dataset consists of 855 verdict decision documents in sexual assault cases from 1990-2021, annotated with the help of legal experts and trained law students. The model uses a combined approach of syntactic and latent structures to find sentences that convey the judge's attitude towards the victim and classify them according to the credibility label set. Our ontology, data, and models will be made available upon request, in the hope they spur future progress in this judicial important task.
Evaluating and Improving the Coreference Capabilities of Machine Translation Models
Yehudai, Asaf, Cattan, Arie, Abend, Omri, Stanovsky, Gabriel
Machine translation (MT) requires a wide range of linguistic capabilities, which current end-to-end models are expected to learn implicitly by observing aligned sentences in bilingual corpora. In this work, we ask: \emph{How well do MT models learn coreference resolution from implicit signal?} To answer this question, we develop an evaluation methodology that derives coreference clusters from MT output and evaluates them without requiring annotations in the target language. We further evaluate several prominent open-source and commercial MT systems, translating from English to six target languages, and compare them to state-of-the-art coreference resolvers on three challenging benchmarks. Our results show that the monolingual resolvers greatly outperform MT models. Motivated by this result, we experiment with different methods for incorporating the output of coreference resolution models in MT, showing improvement over strong baselines.
A Large-Scale Multilingual Study of Visual Constraints on Linguistic Selection of Descriptions
Berger, Uri, Frermann, Lea, Stanovsky, Gabriel, Abend, Omri
We present a large, multilingual study into how vision constrains linguistic choice, covering four languages and five linguistic properties, such as verb transitivity or use of numerals. We propose a novel method that leverages existing corpora of images with captions written by native speakers, and apply it to nine corpora, comprising 600k images and 3M captions. We study the relation between visual input and linguistic choices by training classifiers to predict the probability of expressing a property from raw images, and find evidence supporting the claim that linguistic properties are constrained by visual context across languages. We complement this investigation with a corpus study, taking the test case of numerals. Specifically, we use existing annotations (number or type of objects) to investigate the effect of different visual conditions on the use of numeral expressions in captions, and show that similar patterns emerge across languages. Our methods and findings both confirm and extend existing research in the cognitive literature. We additionally discuss possible applications for language generation.
VASR: Visual Analogies of Situation Recognition
Bitton, Yonatan, Yosef, Ron, Strugo, Eli, Shahaf, Dafna, Schwartz, Roy, Stanovsky, Gabriel
A core process in human cognition is analogical mapping: the ability to identify a similar relational structure between different situations. We introduce a novel task, Visual Analogies of Situation Recognition, adapting the classical word-analogy task into the visual domain. Given a triplet of images, the task is to select an image candidate B' that completes the analogy (A to A' is like B to what?). Unlike previous work on visual analogy that focused on simple image transformations, we tackle complex analogies requiring understanding of scenes. We leverage situation recognition annotations and the CLIP model to generate a large set of 500k candidate analogies. Crowdsourced annotations for a sample of the data indicate that humans agree with the dataset label ~80% of the time (chance level 25%). Furthermore, we use human annotations to create a gold-standard dataset of 3,820 validated analogies. Our experiments demonstrate that state-of-the-art models do well when distractors are chosen randomly (~86%), but struggle with carefully chosen distractors (~53%, compared to 90% human accuracy). We hope our dataset will encourage the development of new analogy-making models. Website: https://vasr-dataset.github.io/
GENIE: A Leaderboard for Human-in-the-Loop Evaluation of Text Generation
Khashabi, Daniel, Stanovsky, Gabriel, Bragg, Jonathan, Lourie, Nicholas, Kasai, Jungo, Choi, Yejin, Smith, Noah A., Weld, Daniel S.
Leaderboards have eased model development for many NLP datasets by standardizing their evaluation and delegating it to an independent external repository. Their adoption, however, is so far limited to tasks that can be reliably evaluated in an automatic manner. This work introduces GENIE, an extensible human evaluation leaderboard, which brings the ease of leaderboards to text generation tasks. GENIE automatically posts leaderboard submissions to crowdsourcing platforms asking human annotators to evaluate them on various axes (e.g., correctness, conciseness, fluency) and compares their answers to various automatic metrics. We introduce several datasets in English to GENIE, representing four core challenges in text generation: machine translation, summarization, commonsense reasoning, and machine comprehension. We provide formal granular evaluation metrics and identify areas for future research. We make GENIE publicly available and hope that it will spur progress in language generation models as well as their automatic and manual evaluation.