Goto

Collaborating Authors

 Stanislav Fort


Large Scale Structure of Neural Network Loss Landscapes

Neural Information Processing Systems

There are many surprising and perhaps counter-intuitive properties of optimization of deep neural networks. We propose and experimentally verify a unified phenomenological model of the loss landscape that incorporates many of them. High dimensionality plays a key role in our model. Our core idea is to model the loss landscape as a set of high dimensional wedges that together form a large-scale, inter-connected structure and towards which optimization is drawn.


Large Scale Structure of Neural Network Loss Landscapes

Neural Information Processing Systems

There are many surprising and perhaps counter-intuitive properties of optimization of deep neural networks. We propose and experimentally verify a unified phenomenological model of the loss landscape that incorporates many of them. High dimensionality plays a key role in our model. Our core idea is to model the loss landscape as a set of high dimensional wedges that together form a large-scale, inter-connected structure and towards which optimization is drawn.