Goto

Collaborating Authors

 Srivastava, Shashank


A Causal Lens for Evaluating Faithfulness Metrics

arXiv.org Artificial Intelligence

Large Language Models (LLMs) offer natural language explanations as an alternative to feature attribution methods for model interpretability. However, despite their plausibility, they may not reflect the model's internal reasoning faithfully, which is crucial for understanding the model's true decision-making processes. Although several faithfulness metrics have been proposed, a unified evaluation framework remains absent. To address this gap, we present Causal Diagnosticity, a framework to evaluate faithfulness metrics for natural language explanations. Our framework employs the concept of causal diagnosticity, and uses model-editing methods to generate faithful-unfaithful explanation pairs. Our benchmark includes four tasks: fact-checking, analogy, object counting, and multi-hop reasoning. We evaluate a variety of faithfulness metrics, including post-hoc explanation and chain-of-thought-based methods. We find that all tested faithfulness metrics often fail to surpass a random baseline. Our work underscores the need for improved metrics and more reliable interpretability methods in LLMs.


INTERACT: Enabling Interactive, Question-Driven Learning in Large Language Models

arXiv.org Artificial Intelligence

Large language models (LLMs) excel at answering questions but remain passive learners--absorbing static data without the ability to question and refine knowledge. This paper explores how LLMs can transition to interactive, question-driven learning through student-teacher dialogues. We introduce INTERACT (INTEReractive Learning for Adaptive Concept Transfer), a framework in which a "student" LLM engages a "teacher" LLM through iterative inquiries to acquire knowledge across 1,347 contexts, including song lyrics, news articles, movie plots, academic papers, and images. Our experiments show that across a wide range of scenarios and LLM architectures, interactive learning consistently enhances performance, achieving up to a 25% improvement, with 'cold-start' student models matching static learning baselines in as few as five dialogue turns. Interactive setups can also mitigate the disadvantages of weaker teachers, showcasing the robustness of question-driven learning.


DISCERN: Decoding Systematic Errors in Natural Language for Text Classifiers

arXiv.org Artificial Intelligence

Despite their high predictive accuracies, current machine learning systems often exhibit systematic biases stemming from annotation artifacts or insufficient support for certain classes in the dataset. Recent work proposes automatic methods for identifying and explaining systematic biases using keywords. We introduce DISCERN, a framework for interpreting systematic biases in text classifiers using language explanations. DISCERN iteratively generates precise natural language descriptions of systematic errors by employing an interactive loop between two large language models. Finally, we use the descriptions to improve classifiers by augmenting classifier training sets with synthetically generated instances or annotated examples via active learning. On three text-classification datasets, we demonstrate that language explanations from our framework induce consistent performance improvements that go beyond what is achievable with exemplars of systematic bias. Finally, in human evaluations, we show that users can interpret systematic biases more effectively (by over 25% relative) and efficiently when described through language explanations as opposed to cluster exemplars.


SocialGaze: Improving the Integration of Human Social Norms in Large Language Models

arXiv.org Artificial Intelligence

While much research has explored enhancing the reasoning capabilities of large language models (LLMs) in the last few years, there is a gap in understanding the alignment of these models with social values and norms. We introduce the task of judging social acceptance. Social acceptance requires models to judge and rationalize the acceptability of people's actions in social situations. For example, is it socially acceptable for a neighbor to ask others in the community to keep their pets indoors at night? We find that LLMs' understanding of social acceptance is often misaligned with human consensus. To alleviate this, we introduce SocialGaze, a multi-step prompting framework, in which a language model verbalizes a social situation from multiple perspectives before forming a judgment. Our experiments demonstrate that the SocialGaze approach improves the alignment with human judgments by up to 11 F1 points with the GPT-3.5 model. We also identify biases and correlations in LLMs in assigning blame that is related to features such as the gender (males are significantly more likely to be judged unfairly) and age (LLMs are more aligned with humans for older narrators).


Fuse to Forget: Bias Reduction and Selective Memorization through Model Fusion

arXiv.org Artificial Intelligence

Model fusion research aims to aggregate the knowledge of multiple individual models to enhance performance by combining their weights. In this work, we study the inverse problem: investigating whether model fusion can be used to reduce unwanted knowledge. We investigate the effects of model fusion in three scenarios: the learning of shortcuts, social biases, and memorization of training data in fine-tuned language models. Through experiments covering classification and generation tasks, our analysis highlights that shared knowledge among models is enhanced during model fusion, while unshared knowledge is usually forgotten. Based on this observation, we demonstrate the potential of model fusion as a debiasing tool and showcase its efficacy in addressing privacy concerns associated with language models.


Leveraging Multiple Teachers for Test-Time Adaptation of Language-Guided Classifiers

arXiv.org Artificial Intelligence

Recent approaches have explored language-guided classifiers capable of classifying examples from novel tasks when provided with task-specific natural language explanations, instructions or prompts (Sanh et al., 2022; R. Menon et al., 2022). While these classifiers can generalize in zero-shot settings, their task performance often varies substantially between different language explanations in unpredictable ways (Lu et al., 2022; Gonen et al., 2022). Also, current approaches fail to leverage unlabeled examples that may be available in many scenarios. Here, we introduce TALC, a framework that uses data programming to adapt a language-guided classifier for a new task during inference when provided with explanations from multiple teachers and unlabeled test examples. Our results show that TALC consistently outperforms a competitive baseline from prior work by an impressive 9.3% (relative improvement). Further, we demonstrate the robustness of TALC to variations in the quality and quantity of provided explanations, highlighting its potential in scenarios where learning from multiple teachers or a crowd is involved. Our code is available at: https://github.com/WeiKangda/TALC.git.


A Comparison of Lexicon-Based and ML-Based Sentiment Analysis: Are There Outlier Words?

arXiv.org Artificial Intelligence

Lexicon-based approaches to sentiment analysis of text are based on each word or lexical entry having a pre-defined weight indicating its sentiment polarity. These are usually manually assigned but the accuracy of these when compared against machine leaning based approaches to computing sentiment, are not known. It may be that there are lexical entries whose sentiment values cause a lexicon-based approach to give results which are very different to a machine learning approach. In this paper we compute sentiment for more than 150,000 English language texts drawn from 4 domains using the Hedonometer, a lexicon-based technique and Azure, a contemporary machine-learning based approach which is part of the Azure Cognitive Services family of APIs which is easy to use. We model differences in sentiment scores between approaches for documents in each domain using a regression and analyse the independent variables (Hedonometer lexical entries) as indicators of each word's importance and contribution to the score differences. Our findings are that the importance of a word depends on the domain and there are no standout lexical entries which systematically cause differences in sentiment scores.


Pragmatic Reasoning Unlocks Quantifier Semantics for Foundation Models

arXiv.org Artificial Intelligence

Generalized quantifiers (e.g., few, most) are used to indicate the proportions predicates are satisfied (for example, some apples are red). One way to interpret quantifier semantics is to explicitly bind these satisfactions with percentage scopes (e.g., 30%-40% of apples are red). This approach can be helpful for tasks like logic formalization and surface-form quantitative reasoning (Gordon and Schubert, 2010; Roy et al., 2015). However, it remains unclear if recent foundation models possess this ability, as they lack direct training signals. To explore this, we introduce QuRe, a crowd-sourced dataset of human-annotated generalized quantifiers in Wikipedia sentences featuring percentage-equipped predicates. We explore quantifier comprehension in language models using PRESQUE, a framework that combines natural language inference and the Rational Speech Acts framework. Experimental results on the HVD dataset and QuRe illustrate that PRESQUE, employing pragmatic reasoning, performs 20% better than a literal reasoning baseline when predicting quantifier percentage scopes, with no additional training required.


Beyond Labels: Empowering Human Annotators with Natural Language Explanations through a Novel Active-Learning Architecture

arXiv.org Artificial Intelligence

Yet, existing low-resource learning techniques, such as Active Learning (AL), that aim to support human annotators mostly focus on the label while neglecting the natural language explanation of a data point. This work proposes a novel AL architecture to support experts' real-world need for label and explanation annotations in low-resource scenarios. Our AL architecture leverages an explanationgeneration model to produce explanations guided by human explanations, a prediction model that utilizes generated explanations toward prediction faithfully, and a novel data diversity-based AL sampling strategy that benefits from the explanation annotations. Automated and human evaluations demonstrate the effectiveness of incorporating explanations Figure 1: Our dual-model AL system architecture at into AL sampling and the improved human annotation every iteration: 1) the AL data selector chooses a few efficiency and trustworthiness with our unlabeled examples; 2) human annotators provide an AL architecture. Additional ablation studies illustrate explanation and label for each data instance; 3) the annotated the potential of our AL architecture explanations are used to finetune the explanationgeneration for transfer learning, generalizability, and integration model; 4) the annotated labels and generated with large language models (LLMs).


Beyond the Imitation Game: Quantifying and extrapolating the capabilities of language models

arXiv.org Artificial Intelligence

Language models demonstrate both quantitative improvement and new qualitative capabilities with increasing scale. Despite their potentially transformative impact, these new capabilities are as yet poorly characterized. In order to inform future research, prepare for disruptive new model capabilities, and ameliorate socially harmful effects, it is vital that we understand the present and near-future capabilities and limitations of language models. To address this challenge, we introduce the Beyond the Imitation Game benchmark (BIG-bench). BIG-bench currently consists of 204 tasks, contributed by 450 authors across 132 institutions. Task topics are diverse, drawing problems from linguistics, childhood development, math, common-sense reasoning, biology, physics, social bias, software development, and beyond. BIG-bench focuses on tasks that are believed to be beyond the capabilities of current language models. We evaluate the behavior of OpenAI's GPT models, Google-internal dense transformer architectures, and Switch-style sparse transformers on BIG-bench, across model sizes spanning millions to hundreds of billions of parameters. In addition, a team of human expert raters performed all tasks in order to provide a strong baseline. Findings include: model performance and calibration both improve with scale, but are poor in absolute terms (and when compared with rater performance); performance is remarkably similar across model classes, though with benefits from sparsity; tasks that improve gradually and predictably commonly involve a large knowledge or memorization component, whereas tasks that exhibit "breakthrough" behavior at a critical scale often involve multiple steps or components, or brittle metrics; social bias typically increases with scale in settings with ambiguous context, but this can be improved with prompting.