Goto

Collaborating Authors

 Srivastava, Biplav


Thinking Fast and Slow in AI: the Role of Metacognition

arXiv.org Artificial Intelligence

AI systems have seen dramatic advancement in recent years, bringing many applications that pervade our everyday life. However, we are still mostly seeing instances of narrow AI: many of these recent developments are typically focused on a very limited set of competencies and goals, e.g., image interpretation, natural language processing, classification, prediction, and many others. Moreover, while these successes can be accredited to improved algorithms and techniques, they are also tightly linked to the availability of huge datasets and computational power. State-of-the-art AI still lacks many capabilities that would naturally be included in a notion of (human) intelligence. We argue that a better study of the mechanisms that allow humans to have these capabilities can help us understand how to imbue AI systems with these competencies. We focus especially on D. Kahneman's theory of thinking fast and slow, and we propose a multi-agent AI architecture where incoming problems are solved by either system 1 (or "fast") agents, that react by exploiting only past experience, or by system 2 (or "slow") agents, that are deliberately activated when there is the need to reason and search for optimal solutions beyond what is expected from the system 1 agent. Both kinds of agents are supported by a model of the world, containing domain knowledge about the environment, and a model of "self", containing information about past actions of the system and solvers' skills.


E-PDDL: A Standardized Way of Defining Epistemic Planning Problems

arXiv.org Artificial Intelligence

Epistemic Planning (EP) refers to an automated planning setting where the agent reasons in the space of knowledge states and tries to find a plan to reach a desirable state from the current state. Its general form, the Multi-agent Epistemic Planning (MEP) problem involves multiple agents who need to reason about both the state of the world and the information flow between agents. In a MEP problem, multiple approaches have been developed recently with varying restrictions, such as considering only the concept of knowledge while not allowing the idea of belief, or not allowing for ``complex" modal operators such as those needed to handle dynamic common knowledge. While the diversity of approaches has led to a deeper understanding of the problem space, the lack of a standardized way to specify MEP problems independently of solution approaches has created difficulties in comparing performance of planners, identifying promising techniques, exploring new strategies like ensemble methods, and making it easy for new researchers to contribute to this research area. To address the situation, we propose a unified way of specifying EP problems - the Epistemic Planning Domain Definition Language, E-PDDL. We show that E-PPDL can be supported by leading MEP planners and provide corresponding parser code that translates EP problems specified in E-PDDL into (M)EP problems that can be handled by several planners. This work is also useful in building more general epistemic planning environments where we envision a meta-cognitive module that takes a planning problem in E-PDDL, identifies and assesses some of its features, and autonomously decides which planner is the best one to solve it.


Did Chatbots Miss Their 'Apollo Moment'? A Survey of the Potential, Gaps and Lessons from Using Collaboration Assistants During COVID-19

arXiv.org Artificial Intelligence

Kambhampati, 2020; Etzioni and DeCario, 2020; Vaishya et al., 2020; Wynants and colleagues, 2020; Artificial Intelligence (AI) technologies have long Srivastava, 2020]. Early in the pandemic, authors been positioned as a tool to provide crucial datadriven like [Kambhampati, 2020; Etzioni and DeCario, 2020; decision support to people. In this survey Vaishya et al., 2020] highlighted various scenarios where paper, we look at how AI in general, and collaboration AI could help in tackling COVID19 as well as some of the assistants (CAs or chatbots for short) in particular, potential pitfalls. The AI efforts were helped by different have been used during a true global exigency types of data being freely made available, calls for open - the COVID-19 pandemic. The key observation collaboration [Woodward, 2020] and a sense of urgency. is that chatbots missed their Apollo moment In Table 1, a sample of AI's potential application during when they could have really provided contextual, COVID-19 is shown. They range from decisions to foster personalized, reliable decision support at scale that understanding of the disease and its impact to helping take the state-of-the-art makes possible. We review the actions for individuals, groups and the society at large.


Thinking Fast and Slow in AI

arXiv.org Artificial Intelligence

This paper proposes a research direction to advance AI which draws inspiration from cognitive theories of human decision making. The premise is that if we gain insights about the causes of some human capabilities that are still lacking in AI (for instance, adaptability, generalizability, common sense, and causal reasoning), we may obtain similar capabilities in an AI system by embedding these causal components. We hope that the high-level description of our vision included in this paper, as well as the several research questions that we propose to consider, can stimulate the AI research community to define, try and evaluate new methodologies, frameworks, and evaluation metrics, in the spirit of achieving a better understanding of both human and machine intelligence.


Toward Cognitive and Immersive Systems: Experiments in a Cognitive Microworld

arXiv.org Artificial Intelligence

As computational power has continued to increase, and sensors have become more accurate, the corresponding advent of systems that are at once cognitive and immersive has arrived. These \textit{cognitive and immersive systems} (CAISs) fall squarely into the intersection of AI with HCI/HRI: such systems interact with and assist the human agents that enter them, in no small part because such systems are infused with AI able to understand and reason about these humans and their knowledge, beliefs, goals, communications, plans, etc. We herein explain our approach to engineering CAISs. We emphasize the capacity of a CAIS to develop and reason over a `theory of the mind' of its human partners. This capacity entails that the AI in question has a sophisticated model of the beliefs, knowledge, goals, desires, emotions, etc.\ of these humans. To accomplish this engineering, a formal framework of very high expressivity is needed. In our case, this framework is a \textit{cognitive event calculus}, a particular kind of quantified multi-operator modal logic, and a matching high-expressivity automated reasoner and planner. To explain, advance, and to a degree validate our approach, we show that a calculus of this type satisfies a set of formal requirements, and can enable a CAIS to understand a psychologically tricky scenario couched in what we call the \textit{cognitive polysolid framework} (CPF). We also formally show that a room that satisfies these requirements can have a useful property we term \emph{expectation of usefulness}. CPF, a sub-class of \textit{cognitive microworlds}, includes machinery able to represent and plan over not merely blocks and actions (such as seen in the primitive `blocks worlds' of old), but also over agents and their mental attitudes about both other agents and inanimate objects.


Reports of the Workshops of the 32nd AAAI Conference on Artificial Intelligence

AI Magazine

The AAAI-18 workshop program included 15 workshops covering a wide range of topics in AI. Workshops were held Sunday and Monday, February 2–7, 2018, at the Hilton New Orleans Riverside in New Orleans, Louisiana, USA. This report contains summaries of the Affective Content Analysis workshop; the Artificial Intelligence Applied to Assistive Technologies and Smart Environments; the AI and Marketing Science workshop; the Artificial Intelligence for Cyber Security workshop; the AI for Imperfect-Information Games; the Declarative Learning Based Programming workshop; the Engineering Dependable and Secure Machine Learning Systems workshop; the Health Intelligence workshop; the Knowledge Extraction from Games workshop; the Plan, Activity, and Intent Recognition workshop; the Planning and Inference workshop; the Preference Handling workshop; the Reasoning and Learning for Human-Machine Dialogues workshop; and the the AI Enhanced Internet of Things Data Processing for Intelligent Applications workshop.


Detecting Backdoor Attacks on Deep Neural Networks by Activation Clustering

arXiv.org Machine Learning

While machine learning (ML) models are being increasingly trusted to make decisions in different and varying areas, the safety of systems using such models has become an increasing concern. In particular, ML models are often trained on data from potentially untrustworthy sources, providing adversaries with the opportunity to manipulate them by inserting carefully crafted samples into the training set. Recent work has shown that this type of attack, called a poisoning attack, allows adversaries to insert backdoors or trojans into the model, enabling malicious behavior with simple external backdoor triggers at inference time and only a blackbox perspective of the model itself. Detecting this type of attack is challenging because the unexpected behavior occurs only when a backdoor trigger, which is known only to the adversary, is present. Model users, either direct users of training data or users of pre-trained model from a catalog, may not guarantee the safe operation of their ML-based system. In this paper, we propose a novel approach to backdoor detection and removal for neural networks. Through extensive experimental results, we demonstrate its effectiveness for neural networks classifying text and images. To the best of our knowledge, this is the first methodology capable of detecting poisonous data crafted to insert backdoors and repairing the model that does not require a verified and trusted dataset.


Tentacular Artificial Intelligence, and the Architecture Thereof, Introduced

arXiv.org Artificial Intelligence

We briefly introduce herein a new form of distributed, multi-agent artificial intelligence, which we refer to as "tentacular." Tentacular AI is distinguished by six attributes, which among other things entail a capacity for reasoning and planning based in highly expressive calculi (logics), and which enlists subsidiary agents across distances circumscribed only by the reach of one or more given networks.


A Train Status Assistant for Indian Railways

arXiv.org Artificial Intelligence

Trains are part-and-parcel of every day lives in countries with large, diverse, multi-lingual population like India. Consequently, an assistant which can accurately predict and explain train delays will help people and businesses alike. We present a novel conversation agent which can engage with people about train status and inform them about its delay at in-line stations. It is trained on past delay data from a subset of trains and generalizes to others.


Trusted Multi-Party Computation and Verifiable Simulations: A Scalable Blockchain Approach

arXiv.org Machine Learning

Large-scale computational experiments, often running over weeks and over large datasets, are used extensively in fields such as epidemiology, meteorology, computational biology, and healthcare to understand phenomena, and design high-stakes policies affecting everyday health and economy. For instance, the OpenMalaria framework is a computationally-intensive simulation used by various nongovernmental and governmental agencies to understand malarial disease spread and effectiveness of intervention strategies, and subsequently design healthcare policies. Given that such shared results form the basis of inferences drawn, technological solutions designed, and day-today policies drafted, it is essential that the computations are validated and trusted. In particular, in a multi-agent environment involving several independent computing agents, a notion of trust in results generated by peers is critical in facilitating transparency, accountability, and collaboration. Using a novel combination of distributed validation of atomic computation blocks and a blockchain-based immutable audits mechanism, this work proposes a universal framework for distributed trust in computations. In particular we address the scalaibility problem by reducing the storage and communication costs using a lossy compression scheme. This framework guarantees not only verifiability of final results, but also the validity of local computations, and its cost-benefit tradeoffs are studied using a synthetic example of training a neural network. Machine learning, data science, and large-scale computations in general has created an era of computationdriven inference, applications, and policymaking [1], [2]. Technological solutions, and policies with far-reaching consequences are increasingly being derived from computational frameworks and data. Multi-agent sociotechnical systems that are tasked with working collaboratively on such tasks function by interactively sharing data, models, and results of local computation. However, when such agents are independent and lack trust, they might not collaborate with or trust the validity of reported computations of other agents. Quite often, these computations are also expensive and time consuming, and thus infeasible for recomputation by the doubting peer as a general course of action.