Goto

Collaborating Authors

 Srivastava, Biplav


Understanding the Capabilities of Large Language Models for Automated Planning

arXiv.org Artificial Intelligence

Automated planning is concerned with developing efficient algorithms to generate plans or sequences of actions to achieve a specific goal in a given environment. Emerging Large Language Models (LLMs) can answer questions, write high-quality programming code, and predict protein folding, showcasing their versatility in solving various tasks beyond language-based problems. In this paper, we aim to explore how LLMs can also be used for automated planning. To do so, we seek to answer four key questions. Firstly, we want to understand the extent to which LLMs can be used for plan generation. Secondly, we aim to identify which pre-training data is most effective in facilitating plan generation. Thirdly, we investigate whether fine-tuning or prompting is a more effective approach for plan generation. Finally, we explore whether LLMs are capable of plan generalization. By answering these questions, the study seeks to shed light on the capabilities of LLMs in solving complex planning problems and provide insights into the most effective approaches for using LLMs in this context.


Towards Explainable and Safe Conversational Agents for Mental Health: A Survey

arXiv.org Artificial Intelligence

Virtual Mental Health Assistants (VMHAs) are seeing continual advancements to support the overburdened global healthcare system that gets 60 million primary care visits, and 6 million Emergency Room (ER) visits annually. These systems are built by clinical psychologists, psychiatrists, and Artificial Intelligence (AI) researchers for Cognitive Behavioral Therapy (CBT). At present, the role of VMHAs is to provide emotional support through information, focusing less on developing a reflective conversation with the patient. A more comprehensive, safe and explainable approach is required to build responsible VMHAs to ask follow-up questions or provide a well-informed response. This survey offers a systematic critical review of the existing conversational agents in mental health, followed by new insights into the improvements of VMHAs with contextual knowledge, datasets, and their emerging role in clinical decision support. We also provide new directions toward enriching the user experience of VMHAs with explainability, safety, and wholesome trustworthiness. Finally, we provide evaluation metrics and practical considerations for VMHAs beyond the current literature to build trust between VMHAs and patients in active communications.


Fast and Slow Planning

arXiv.org Artificial Intelligence

The concept of Artificial Intelligence has gained a lot of attention over the last decade. In particular, AI-based tools have been employed in several scenarios and are, by now, pervading our everyday life. Nonetheless, most of these systems lack many capabilities that we would naturally consider to be included in a notion of "intelligence". In this work, we present an architecture that, inspired by the cognitive theory known as Thinking Fast and Slow by D. Kahneman, is tasked with solving planning problems in different settings, specifically: classical and multi-agent epistemic. The system proposed is an instance of a more general AI paradigm, referred to as SOFAI (for Slow and Fast AI). SOFAI exploits multiple solving approaches, with different capabilities that characterize them as either fast or slow, and a metacognitive module to regulate them. This combination of components, which roughly reflects the human reasoning process according to D. Kahneman, allowed us to enhance the reasoning process that, in this case, is concerned with planning in two different settings. The behavior of this system is then compared to state-of-the-art solvers, showing that the newly introduced system presents better results in terms of generality, solving a wider set of problems with an acceptable trade-off between solving times and solution accuracy.


Advances in Automatically Rating the Trustworthiness of Text Processing Services

arXiv.org Artificial Intelligence

AI services are known to have unstable behavior when subjected to changes in data, models or users. Such behaviors, whether triggered by omission or commission, lead to trust issues when AI works with humans. The current approach of assessing AI services in a black box setting, where the consumer does not have access to the AI's source code or training data, is limited. The consumer has to rely on the AI developer's documentation and trust that the system has been built as stated. Further, if the AI consumer reuses the service to build other services which they sell to their customers, the consumer is at the risk of the service providers (both data and model providers). Our approach, in this context, is inspired by the success of nutritional labeling in food industry to promote health and seeks to assess and rate AI services for trust from the perspective of an independent stakeholder. The ratings become a means to communicate the behavior of AI systems so that the consumer is informed about the risks and can make an informed decision. In this paper, we will first describe recent progress in developing rating methods for text-based machine translator AI services that have been found promising with user studies. Then, we will outline challenges and vision for a principled, multi-modal, causality-based rating methodologies and its implication for decision-support in real-world scenarios like health and food recommendation.


Rating Sentiment Analysis Systems for Bias through a Causal Lens

arXiv.org Artificial Intelligence

Sentiment Analysis Systems (SASs) are data-driven Artificial Intelligence (AI) systems that, given a piece of text, assign one or more numbers conveying the polarity and emotional intensity expressed in the input. Like other automatic machine learning systems, they have also been known to exhibit model uncertainty where a (small) change in the input leads to drastic swings in the output. This can be especially problematic when inputs are related to protected features like gender or race since such behavior can be perceived as a lack of fairness, i.e., bias. We introduce a novel method to assess and rate SASs where inputs are perturbed in a controlled causal setting to test if the output sentiment is sensitive to protected variables even when other components of the textual input, e.g., chosen emotion words, are fixed. We then use the result to assign labels (ratings) at fine-grained and overall levels to convey the robustness of the SAS to input changes. The ratings serve as a principled basis to compare SASs and choose among them based on behavior. It benefits all users, especially developers who reuse off-the-shelf SASs to build larger AI systems but do not have access to their code or training data to compare.


On Safe and Usable Chatbots for Promoting Voter Participation

arXiv.org Artificial Intelligence

Chatbots, or bots for short, are multi-modal collaborative assistants that can help people complete useful tasks. Usually, when chatbots are referenced in connection with elections, they often draw negative reactions due to the fear of mis-information and hacking. Instead, in this paper, we explore how chatbots may be used to promote voter participation in vulnerable segments of society like senior citizens and first-time voters. In particular, we build a system that amplifies official information while personalizing it to users' unique needs transparently. We discuss its design, build prototypes with frequently asked questions (FAQ) election information for two US states that are low on an ease-of-voting scale, and report on its initial evaluation in a focus group. Our approach can be a win-win for voters, election agencies trying to fulfill their mandate and democracy at large.


Plansformer: Generating Symbolic Plans using Transformers

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have been the subject of active research, significantly advancing the field of Natural Language Processing (NLP). From BERT to BLOOM, LLMs have surpassed state-of-the-art results in various natural language tasks such as question answering, summarization, and text generation. Many ongoing efforts focus on understanding LLMs' capabilities, including their knowledge of the world, syntax, and semantics. However, extending the textual prowess of LLMs to symbolic reasoning has been slow and predominantly focused on tackling problems related to the mathematical field. In this paper, we explore the use of LLMs for automated planning - a branch of AI concerned with the realization of action sequences (plans) to achieve a goal, typically executed by intelligent agents, autonomous robots, and unmanned vehicles. We introduce Plansformer; an LLM fine-tuned on planning problems and capable of generating plans with favorable behavior in terms of correctness and length with reduced knowledge-engineering efforts. We also demonstrate the adaptability of Plansformer in solving different planning domains with varying complexities, owing to the transfer learning abilities of LLMs. For one configuration of Plansformer, we achieve ~97% valid plans, out of which ~95% are optimal for Towers of Hanoi - a puzzle-solving domain.


A Dataset and Baseline Approach for Identifying Usage States from Non-Intrusive Power Sensing With MiDAS IoT-based Sensors

arXiv.org Artificial Intelligence

Authors in (Rajapaksha and The growth in the deployment of Internet of Things (IoT) Bergmeir 2022) focused on providing rule based explanations sensors across different industries has opened several opportunities for a particular forecast, considering the global forecasting for the economy. One of them is the collection of IoT model as a black-box model trained across multivariate data that companies can use to build smarter solutions.


Combining Fast and Slow Thinking for Human-like and Efficient Navigation in Constrained Environments

arXiv.org Artificial Intelligence

Current AI systems lack several important human capabilities, such as adaptability, generalizability, self-control, consistency, common sense, and causal reasoning. We believe that existing cognitive theories of human decision making, such as the thinking fast and slow theory, can provide insights on how to advance AI systems towards some of these capabilities. In this paper, we propose a general architecture that is based on fast/slow solvers and a metacognitive component. We then present experimental results on the behavior of an instance of this architecture, for AI systems that make decisions about navigating in a constrained environment. We show how combining the fast and slow decision modalities allows the system to evolve over time and gradually pass from slow to fast thinking with enough experience, and that this greatly helps in decision quality, resource consumption, and efficiency.


ULTRA: A Data-driven Approach for Recommending Team Formation in Response to Proposal Calls

arXiv.org Artificial Intelligence

We introduce an emerging AI-based approach and prototype system for assisting team formation when researchers respond to calls for proposals from funding agencies. This is an instance of the general problem of building teams when demand opportunities come periodically and potential members may vary over time. The novelties of our approach are that we: (a) extract technical skills needed about researchers and calls from multiple data sources and normalize them using Natural Language Processing (NLP) techniques, (b) build a prototype solution based on matching and teaming based on constraints, (c) describe initial feedback about system from researchers at a University to deploy, and (d) create and publish a dataset that others can use.