Srivastava, Abhishek
EB-NeRD: A Large-Scale Dataset for News Recommendation
Kruse, Johannes, Lindskow, Kasper, Kalloori, Saikishore, Polignano, Marco, Pomo, Claudio, Srivastava, Abhishek, Uppal, Anshuk, Andersen, Michael Riis, Frellsen, Jes
Personalized content recommendations have been pivotal to the content experience in digital media from video streaming to social networks. However, several domain specific challenges have held back adoption of recommender systems in news publishing. To address these challenges, we introduce the Ekstra Bladet News Recommendation Dataset (EB-NeRD). The dataset encompasses data from over a million unique users and more than 37 million impression logs from Ekstra Bladet. It also includes a collection of over 125,000 Danish news articles, complete with titles, abstracts, bodies, and metadata, such as categories. EB-NeRD served as the benchmark dataset for the RecSys '24 Challenge, where it was demonstrated how the dataset can be used to address both technical and normative challenges in designing effective and responsible recommender systems for news publishing. The dataset is available at: https://recsys.eb.dk.
RecSys Challenge 2024: Balancing Accuracy and Editorial Values in News Recommendations
Kruse, Johannes, Lindskow, Kasper, Kalloori, Saikishore, Polignano, Marco, Pomo, Claudio, Srivastava, Abhishek, Uppal, Anshuk, Andersen, Michael Riis, Frellsen, Jes
The RecSys Challenge 2024 aims to advance news recommendation by addressing both the technical and normative challenges inherent in designing effective and responsible recommender systems for news publishing. This paper describes the challenge, including its objectives, problem setting, and the dataset provided by the Danish news publishers Ekstra Bladet and JP/Politikens Media Group ("Ekstra Bladet"). The challenge explores the unique aspects of news recommendation, such as modeling user preferences based on behavior, accounting for the influence of the news agenda on user interests, and managing the rapid decay of news items. Additionally, the challenge embraces normative complexities, investigating the effects of recommender systems on news flow and their alignment with editorial values. We summarize the challenge setup, dataset characteristics, and evaluation metrics. Finally, we announce the winners and highlight their contributions. The dataset is available at: https://recsys.eb.dk.
BEIR: A Heterogenous Benchmark for Zero-shot Evaluation of Information Retrieval Models
Thakur, Nandan, Reimers, Nils, Rücklé, Andreas, Srivastava, Abhishek, Gurevych, Iryna
Neural IR models have often been studied in homogeneous and narrow settings, which has considerably limited insights into their generalization capabilities. To address this, and to allow researchers to more broadly establish the effectiveness of their models, we introduce BEIR (Benchmarking IR), a heterogeneous benchmark for information retrieval. We leverage a careful selection of 17 datasets for evaluation spanning diverse retrieval tasks including open-domain datasets as well as narrow expert domains. We study the effectiveness of nine state-of-the-art retrieval models in a zero-shot evaluation setup on BEIR, finding that performing well consistently across all datasets is challenging. Our results show BM25 is a robust baseline and Reranking-based models overall achieve the best zero-shot performances, however, at high computational costs. In contrast, Dense-retrieval models are computationally more efficient but often underperform other approaches, highlighting the considerable room for improvement in their generalization capabilities. In this work, we extensively analyze different retrieval models and provide several suggestions that we believe may be useful for future work. BEIR datasets and code are available at https://github.com/UKPLab/beir.
Conditional Hybrid GAN for Sequence Generation
Yu, Yi, Srivastava, Abhishek, Shah, Rajiv Ratn
Conditional sequence generation aims to instruct the generation procedure by conditioning the model with additional context information, which is a self-supervised learning issue (a form of unsupervised learning with supervision information from data itself). Unfortunately, the current state-of-the-art generative models have limitations in sequence generation with multiple attributes. In this paper, we propose a novel conditional hybrid GAN (C-Hybrid-GAN) to solve this issue. Discrete sequence with triplet attributes are separately generated when conditioned on the same context. Most importantly, relational reasoning technique is exploited to model not only the dependency inside each sequence of the attribute during the training of the generator but also the consistency among the sequences of attributes during the training of the discriminator. To avoid the non-differentiability problem in GANs encountered during discrete data generation, we exploit the Gumbel-Softmax technique to approximate the distribution of discrete-valued sequences. Through evaluating the task of generating melody (associated with note, duration, and rest) from lyrics, we demonstrate that the proposed C-Hybrid-GAN outperforms the existing methods in context-conditioned discrete-valued sequence generation.