Goto

Collaborating Authors

 Srinivasan, Tejas


Adjust for Trust: Mitigating Trust-Induced Inappropriate Reliance on AI Assistance

arXiv.org Artificial Intelligence

Trust biases how users rely on AI recommendations in AI-assisted decision-making tasks, with low and high levels of trust resulting in increased under- and over-reliance, respectively. We propose that AI assistants should adapt their behavior through trust-adaptive interventions to mitigate such inappropriate reliance. For instance, when user trust is low, providing an explanation can elicit more careful consideration of the assistant's advice by the user. In two decision-making scenarios -- laypeople answering science questions and doctors making medical diagnoses -- we find that providing supporting and counter-explanations during moments of low and high trust, respectively, yields up to 38% reduction in inappropriate reliance and 20% improvement in decision accuracy. We are similarly able to reduce over-reliance by adaptively inserting forced pauses to promote deliberation. Our results highlight how AI adaptation to user trust facilitates appropriate reliance, presenting exciting avenues for improving human-AI collaboration.


Better Slow than Sorry: Introducing Positive Friction for Reliable Dialogue Systems

arXiv.org Artificial Intelligence

While theories of discourse and cognitive science have long recognized the value of unhurried pacing, recent dialogue research tends to minimize friction in conversational systems. Yet, frictionless dialogue risks fostering uncritical reliance on AI outputs, which can obscure implicit assumptions and lead to unintended consequences. To meet this challenge, we propose integrating positive friction into conversational AI, which promotes user reflection on goals, critical thinking on system response, and subsequent re-conditioning of AI systems. We hypothesize systems can improve goal alignment, modeling of user mental states, and task success by deliberately slowing down conversations in strategic moments to ask questions, reveal assumptions, or pause. We present an ontology of positive friction and collect expert human annotations on multi-domain and embodied goal-oriented corpora. Experiments on these corpora, along with simulated interactions using state-of-the-art systems, suggest incorporating friction not only fosters accountable decision-making, but also enhances machine understanding of user beliefs and goals, and increases task success rates.


Compare without Despair: Reliable Preference Evaluation with Generation Separability

arXiv.org Artificial Intelligence

Human evaluation of generated language through pairwise preference judgments is pervasive. However, under common scenarios, such as when generations from a model pair are very similar, or when stochastic decoding results in large variations in generations, it results in inconsistent preference ratings. We address these challenges by introducing a meta-evaluation measure, separability, which estimates how suitable a test instance is for pairwise preference evaluation. For a candidate test instance, separability samples multiple generations from a pair of models, and measures how distinguishable the two sets of generations are. Our experiments show that instances with high separability values yield more consistent preference ratings from both human- and auto-raters. Further, the distribution of separability allows insights into which test benchmarks are more valuable for comparing models. Finally, we incorporate separability into ELO ratings, accounting for how suitable each test instance might be for reliably ranking LLMs. Overall, separability has implications for consistent, efficient and robust preference evaluation of LLMs with both human- and auto-raters.


Selective "Selective Prediction": Reducing Unnecessary Abstention in Vision-Language Reasoning

arXiv.org Artificial Intelligence

Selective prediction minimizes incorrect predictions from vision-language models (VLMs) by allowing them to abstain from answering when uncertain. However, when deploying a vision-language system with low tolerance for inaccurate predictions, selective prediction may be over-cautious and abstain too frequently, even on many correct predictions. We introduce ReCoVERR, an inference-time algorithm to reduce the over-abstention of a selective vision-language system without increasing the error rate of the system's predictions. When the VLM makes a low-confidence prediction, instead of abstaining ReCoVERR tries to find relevant clues in the image that provide additional evidence for the prediction. ReCoVERR uses an LLM to pose related questions to the VLM, collects high-confidence evidences, and if enough evidence confirms the prediction the system makes a prediction instead of abstaining. ReCoVERR enables three VLMs (BLIP2, InstructBLIP, and LLaVA-1.5) to answer up to 20% more questions on the VQAv2 and A-OKVQA tasks without decreasing system accuracy, thus improving overall system reliability. Our code is available at https://github.com/tejas1995/ReCoVERR.


WinoViz: Probing Visual Properties of Objects Under Different States

arXiv.org Artificial Intelligence

Humans perceive and comprehend different visual properties of an object based on specific contexts. For instance, we know that a banana turns brown ``when it becomes rotten,'' whereas it appears green ``when it is unripe.'' Previous studies on probing visual commonsense knowledge have primarily focused on examining language models' understanding of typical properties (e.g., colors and shapes) of objects. We present WinoViz, a text-only evaluation dataset, consisting of 1,380 examples that probe the reasoning abilities of language models regarding variant visual properties of objects under different contexts or states. Our task is challenging since it requires pragmatic reasoning (finding intended meanings) and visual knowledge reasoning. We also present multi-hop data, a more challenging version of our data, which requires multi-step reasoning chains to solve our task. In our experimental analysis, our findings are: a) Large language models such as GPT-4 demonstrate effective performance, but when it comes to multi-hop data, their performance is significantly degraded. b) Large models perform well on pragmatic reasoning, but visual knowledge reasoning is a bottleneck in our task. c) Vision-language models outperform their language-model counterparts. d) A model with machine-generated images performs poorly in our task. This is due to the poor quality of the generated images.


Multimodal Speech Recognition for Language-Guided Embodied Agents

arXiv.org Artificial Intelligence

Benchmarks for language-guided embodied agents typically assume text-based instructions, but deployed agents will encounter spoken instructions. While Automatic Speech Recognition (ASR) models can bridge the input gap, erroneous ASR transcripts can hurt the agents' ability to complete tasks. In this work, we propose training a multimodal ASR model to reduce errors in transcribing spoken instructions by considering the accompanying visual context. We train our model on a dataset of spoken instructions, synthesized from the ALFRED task completion dataset, where we simulate acoustic noise by systematically masking spoken words. We find that utilizing visual observations facilitates masked word recovery, with multimodal ASR models recovering up to 30% more masked words than unimodal baselines. We also find that a text-trained embodied agent successfully completes tasks more often by following transcribed instructions from multimodal ASR models. github.com/Cylumn/embodied-multimodal-asr


I2I: Initializing Adapters with Improvised Knowledge

arXiv.org Artificial Intelligence

Adapters present a promising solution to the catastrophic forgetting problem in continual learning. However, training independent Adapter modules for every new task misses an opportunity for cross-task knowledge transfer. We propose Improvise to Initialize (I2I), a continual learning algorithm that initializes Adapters for incoming tasks by distilling knowledge from previously-learned tasks' Adapters. We evaluate I2I on CLiMB, a multimodal continual learning benchmark, by conducting experiments on sequences of visual question answering tasks. Adapters trained with I2I consistently achieve better task accuracy than independently-trained Adapters, demonstrating that our algorithm facilitates knowledge transfer between task Adapters. I2I also results in better cross-task knowledge transfer than the state-of-the-art AdapterFusion without incurring the associated parametric cost.


VAuLT: Augmenting the Vision-and-Language Transformer for Sentiment Classification on Social Media

arXiv.org Artificial Intelligence

We propose the Vision-and-Augmented-Language Transformer (VAuLT). VAuLT is an extension of the popular Vision-and-Language Transformer (ViLT), and improves performance on vision-and-language (VL) tasks that involve more complex text inputs than image captions while having minimal impact on training and inference efficiency. ViLT, importantly, enables efficient training and inference in VL tasks, achieved by encoding images using a linear projection of patches instead of an object detector. However, it is pretrained on captioning datasets, where the language input is simple, literal, and descriptive, therefore lacking linguistic diversity. So, when working with multimedia data in the wild, such as multimodal social media data, there is a notable shift from captioning language data, as well as diversity of tasks. We indeed find evidence that the language capacity of ViLT is lacking. The key insight and novelty of VAuLT is to propagate the output representations of a large language model (LM) like BERT to the language input of ViLT. We show that joint training of the LM and ViLT can yield relative improvements up to 20% over ViLT and achieve state-of-the-art or comparable performance on VL tasks involving richer language inputs and affective constructs, such as for Target-Oriented Sentiment Classification in TWITTER-2015 and TWITTER-2017, and Sentiment Classification in MVSA-Single and MVSA-Multiple. Our code is available at https://github.com/gchochla/VAuLT.


CLiMB: A Continual Learning Benchmark for Vision-and-Language Tasks

arXiv.org Artificial Intelligence

Current state-of-the-art vision-and-language models are evaluated on tasks either individually or in a multi-task setting, overlooking the challenges of continually learning (CL) tasks as they arrive. Existing CL benchmarks have facilitated research on task adaptation and mitigating "catastrophic forgetting", but are limited to vision-only and language-only tasks. We present CLiMB, a benchmark to study the challenge of learning multimodal tasks in a CL setting, and to systematically evaluate how upstream continual learning can rapidly generalize to new multimodal and unimodal tasks. CLiMB includes implementations of several CL algorithms and a modified Vision-Language Transformer (ViLT) model that can be deployed on both multimodal and unimodal tasks. We find that common CL methods can help mitigate forgetting during multimodal task learning, but do not enable cross-task knowledge transfer. We envision that CLiMB will facilitate research on a new class of CL algorithms for this challenging multimodal setting.


Curriculum Learning for Data-Efficient Vision-Language Alignment

arXiv.org Artificial Intelligence

Aligning image and text encoders from scratch using contrastive learning requires large amounts of paired image-text data. We alleviate this need by aligning individually pre-trained language and vision representation models using a much smaller amount of paired data, augmented with a curriculum learning algorithm to learn fine-grained vision-language alignments. TOnICS (Training with Ontology-Informed Contrastive Sampling) initially samples minibatches whose image-text pairs contain a wide variety of objects to learn object-level alignment, and progressively samples minibatches where all image-text pairs contain the same object to learn finer-grained contextual alignment. Aligning pre-trained BERT and VinVL models to each other using TOnICS outperforms CLIP on downstream zero-shot image retrieval while using less than 1% as much training data.