Srinivasan, Sundararajan
SEAL: Speaker Error Correction using Acoustic-conditioned Large Language Models
Kumar, Anurag, Paturi, Rohit, Afshan, Amber, Srinivasan, Sundararajan
Speaker Diarization (SD) is a crucial component of modern end-to-end ASR pipelines. Traditional SD systems, which are typically audio-based and operate independently of ASR, often introduce speaker errors, particularly during speaker transitions and overlapping speech. Recently, language models including fine-tuned large language models (LLMs) have shown to be effective as a second-pass speaker error corrector by leveraging lexical context in the transcribed output. In this work, we introduce a novel acoustic conditioning approach to provide more fine-grained information from the acoustic diarizer to the LLM. We also show that a simpler constrained decoding strategy reduces LLM hallucinations, while avoiding complicated post-processing. Our approach significantly reduces the speaker error rates by 24-43% across Fisher, Callhome, and RT03-CTS datasets, compared to the first-pass Acoustic SD.
Meta-Learning Adaptable Foundation Models
Block, Jacob L., Srinivasan, Sundararajan, Collins, Liam, Mokhtari, Aryan, Shakkottai, Sanjay
The power of foundation models (FMs) lies in their capacity to learn highly expressive representations that can be adapted to a broad spectrum of tasks. However, these pretrained models require multiple stages of fine-tuning to become effective for downstream applications. Conventionally, the model is first retrained on the aggregate of a diverse set of tasks of interest and then adapted to specific low-resource downstream tasks by utilizing a parameter-efficient fine-tuning (PEFT) scheme. While this two-phase procedure seems reasonable, the independence of the retraining and fine-tuning phases causes a major issue, as there is no guarantee the retrained model will achieve good performance post-fine-tuning. To explicitly address this issue, we introduce a meta-learning framework infused with PEFT in this intermediate retraining stage to learn a model that can be easily adapted to unseen tasks. For our theoretical results, we focus on linear models using low-rank adaptations. In this setting, we demonstrate the suboptimality of standard retraining for finding an adaptable set of parameters. Further, we prove that our method recovers the optimally adaptable parameters. We then apply these theoretical insights to retraining the RoBERTa model to predict the continuation of conversations between different personas within the ConvAI2 dataset. Empirically, we observe significant performance benefits using our proposed meta-learning scheme during retraining relative to the conventional approach.
CriSPO: Multi-Aspect Critique-Suggestion-guided Automatic Prompt Optimization for Text Generation
He, Han, Liu, Qianchu, Xu, Lei, Shivade, Chaitanya, Zhang, Yi, Srinivasan, Sundararajan, Kirchhoff, Katrin
Existing automatic prompt engineering methods are typically designed for discriminative tasks, where new task prompts are iteratively refined with limited feedback from a single metric reflecting a single aspect. However, these approaches are suboptimal for generative tasks, which require more nuanced guidance beyond a single numeric metric to improve the prompt and optimize multiple aspects of the generated text. To address these challenges, we propose a novel multi-aspect Critique-Suggestion-guided automatic Prompt Optimization (CriSPO) approach. CriSPO introduces a critique-suggestion module as its core component. This module spontaneously discovers aspects, and compares generated and reference texts across these aspects, providing specific suggestions for prompt modification. These clear critiques and actionable suggestions guide a receptive optimizer module to make more substantial changes, exploring a broader and more effective search space. To further improve CriSPO with multi-metric optimization, we introduce an Automatic Suffix Tuning (AST) extension to enhance the performance of task prompts across multiple metrics. We evaluate CriSPO on 4 state-of-the-art LLMs across 4 summarization and 5 QA datasets. Extensive experiments show 3-4\% ROUGE score improvement on summarization and substantial improvement of various metrics on QA.
SpeechVerse: A Large-scale Generalizable Audio Language Model
Das, Nilaksh, Dingliwal, Saket, Ronanki, Srikanth, Paturi, Rohit, Huang, Zhaocheng, Mathur, Prashant, Yuan, Jie, Bekal, Dhanush, Niu, Xing, Jayanthi, Sai Muralidhar, Li, Xilai, Mundnich, Karel, Sunkara, Monica, Srinivasan, Sundararajan, Han, Kyu J, Kirchhoff, Katrin
Large language models (LLMs) have shown incredible proficiency in performing tasks that require semantic understanding of natural language instructions. Recently, many works have further expanded this capability to perceive multimodal audio and text inputs, but their capabilities are often limited to specific fine-tuned tasks such as automatic speech recognition and translation. We therefore develop SpeechVerse, a robust multi-task training and curriculum learning framework that combines pre-trained speech and text foundation models via a small set of learnable parameters, while keeping the pre-trained models frozen during training. The models are instruction finetuned using continuous latent representations extracted from the speech foundation model to achieve optimal zero-shot performance on a diverse range of speech processing tasks using natural language instructions. We perform extensive benchmarking that includes comparing our model performance against traditional baselines across several datasets and tasks. Furthermore, we evaluate the model's capability for generalized instruction following by testing on out-of-domain datasets, novel prompts, and unseen tasks. Our empirical experiments reveal that our multi-task SpeechVerse model is even superior to conventional task-specific baselines on 9 out of the 11 tasks.
SpeechGuard: Exploring the Adversarial Robustness of Multimodal Large Language Models
Peri, Raghuveer, Jayanthi, Sai Muralidhar, Ronanki, Srikanth, Bhatia, Anshu, Mundnich, Karel, Dingliwal, Saket, Das, Nilaksh, Hou, Zejiang, Huybrechts, Goeric, Vishnubhotla, Srikanth, Garcia-Romero, Daniel, Srinivasan, Sundararajan, Han, Kyu J, Kirchhoff, Katrin
Integrated Speech and Large Language Models (SLMs) that can follow speech instructions and generate relevant text responses have gained popularity lately. However, the safety and robustness of these models remains largely unclear. In this work, we investigate the potential vulnerabilities of such instruction-following speech-language models to adversarial attacks and jailbreaking. Specifically, we design algorithms that can generate adversarial examples to jailbreak SLMs in both white-box and black-box attack settings without human involvement. Additionally, we propose countermeasures to thwart such jailbreaking attacks. Our models, trained on dialog data with speech instructions, achieve state-of-the-art performance on spoken question-answering task, scoring over 80% on both safety and helpfulness metrics. Despite safety guardrails, experiments on jailbreaking demonstrate the vulnerability of SLMs to adversarial perturbations and transfer attacks, with average attack success rates of 90% and 10% respectively when evaluated on a dataset of carefully designed harmful questions spanning 12 different toxic categories. However, we demonstrate that our proposed countermeasures reduce the attack success significantly.
End-to-End Single-Channel Speaker-Turn Aware Conversational Speech Translation
Zuluaga-Gomez, Juan, Huang, Zhaocheng, Niu, Xing, Paturi, Rohit, Srinivasan, Sundararajan, Mathur, Prashant, Thompson, Brian, Federico, Marcello
Conventional speech-to-text translation (ST) systems are trained on single-speaker utterances, and they may not generalize to real-life scenarios where the audio contains conversations by multiple speakers. In this paper, we tackle single-channel multi-speaker conversational ST with an end-to-end and multi-task training model, named Speaker-Turn Aware Conversational Speech Translation, that combines automatic speech recognition, speech translation and speaker turn detection using special tokens in a serialized labeling format. We run experiments on the Fisher-CALLHOME corpus, which we adapted by merging the two single-speaker channels into one multi-speaker channel, thus representing the more realistic and challenging scenario with multi-speaker turns and cross-talk. Experimental results across single- and multi-speaker conditions and against conventional ST systems, show that our model outperforms the reference systems on the multi-speaker condition, while attaining comparable performance on the single-speaker condition. We release scripts for data processing and model training.
Speaker Diarization of Scripted Audiovisual Content
Virkar, Yogesh, Thompson, Brian, Paturi, Rohit, Srinivasan, Sundararajan, Federico, Marcello
The media localization industry usually requires a verbatim script of the final film or TV production in order to create subtitles or dubbing scripts in a foreign language. In particular, the verbatim script (i.e. as-broadcast script) must be structured into a sequence of dialogue lines each including time codes, speaker name and transcript. Current speech recognition technology alleviates the transcription step. However, state-of-the-art speaker diarization models still fall short on TV shows for two main reasons: (i) their inability to track a large number of speakers, (ii) their low accuracy in detecting frequent speaker changes. To mitigate this problem, we present a novel approach to leverage production scripts used during the shooting process, to extract pseudo-labeled data for the speaker diarization task. We propose a novel semi-supervised approach and demonstrate improvements of 51.7% relative to two unsupervised baseline models on our metrics on a 66 show test set.
Lexical Speaker Error Correction: Leveraging Language Models for Speaker Diarization Error Correction
Paturi, Rohit, Srinivasan, Sundararajan, Li, Xiang
Speaker diarization (SD) is typically used with an automatic speech recognition (ASR) system to ascribe speaker labels to recognized words. The conventional approach reconciles outputs from independently optimized ASR and SD systems, where the SD system typically uses only acoustic information to identify the speakers in the audio stream. This approach can lead to speaker errors especially around speaker turns and regions of speaker overlap. In this paper, we propose a novel second-pass speaker error correction system using lexical information, leveraging the power of modern language models (LMs). Our experiments across multiple telephony datasets show that our approach is both effective and robust. Training and tuning only on the Fisher dataset, this error correction approach leads to relative word-level diarization error rate (WDER) reductions of 15-30% on three telephony datasets: RT03-CTS, Callhome American English and held-out portions of Fisher.
Device Directedness with Contextual Cues for Spoken Dialog Systems
Bekal, Dhanush, Srinivasan, Sundararajan, Bodapati, Sravan, Ronanki, Srikanth, Kirchhoff, Katrin
In this work, we define barge-in verification as a supervised learning task where audio-only information is used to classify user spoken dialogue into true and false barge-ins. Following the success of pre-trained models, we use low-level speech representations from a self-supervised representation learning model for our downstream classification task. Further, we propose a novel technique to infuse lexical information directly into speech representations to improve the domain-specific language information implicitly learned during pre-training. Experiments conducted on spoken dialog data show that our proposed model trained to validate barge-in entirely from speech representations is faster by 38% relative and achieves 4.5% relative F1 score improvement over a baseline LSTM model that uses both audio and Automatic Speech Recognition (ASR) 1-best hypotheses. On top of this, our best proposed model with lexically infused representations along with contextual features provides a further relative improvement of 5.7% in the F1 score but only 22% faster than the baseline.