Not enough data to create a plot.
Try a different view from the menu above.
Srebro, Nathan
Better Rates for Random Task Orderings in Continual Linear Models
Evron, Itay, Levinstein, Ran, Schliserman, Matan, Sherman, Uri, Koren, Tomer, Soudry, Daniel, Srebro, Nathan
We study the common continual learning setup where an overparameterized model is sequentially fitted to a set of jointly realizable tasks. We analyze the forgetting, i.e., loss on previously seen tasks, after $k$ iterations. For linear models, we prove that fitting a task is equivalent to a single stochastic gradient descent (SGD) step on a modified objective. We develop novel last-iterate SGD upper bounds in the realizable least squares setup, and apply them to derive new results for continual learning. Focusing on random orderings over $T$ tasks, we establish universal forgetting rates, whereas existing rates depend on the problem dimensionality or complexity. Specifically, in continual regression with replacement, we improve the best existing rate from $O((d-r)/k)$ to $O(\min(k^{-1/4}, \sqrt{d-r}/k, \sqrt{Tr}/k))$, where $d$ is the dimensionality and $r$ the average task rank. Furthermore, we establish the first rates for random task orderings without replacement. The obtained rate of $O(\min(T^{-1/4}, (d-r)/T))$ proves for the first time that randomization alone, with no task repetition, can prevent catastrophic forgetting in sufficiently long task sequences. Finally, we prove a similar $O(k^{-1/4})$ universal rate for the forgetting in continual linear classification on separable data. Our universal rates apply for broader projection methods, such as block Kaczmarz and POCS, illuminating their loss convergence under i.i.d and one-pass orderings.
PENCIL: Long Thoughts with Short Memory
Yang, Chenxiao, Srebro, Nathan, McAllester, David, Li, Zhiyuan
While recent works (e.g. o1, DeepSeek R1) have demonstrated great promise of using long Chain-of-Thought (CoT) to improve reasoning capabilities of language models, scaling it up during test-time is challenging due to inefficient memory usage -- intermediate computations accumulate indefinitely in context even no longer needed for future thoughts. We propose PENCIL, which incorporates a reduction mechanism into the autoregressive generation process, allowing the model to recursively clean up intermediate thoughts based on patterns learned from training. With this reduction mechanism, PENCIL significantly reduces the maximal context length required during generation, and thus can generate longer thoughts with limited memory, solving larger-scale problems given more thinking time. For example, we demonstrate PENCIL achieves 97\% accuracy on the challenging Einstein's puzzle -- a task even large models like GPT-4 struggle with -- using only a small 25M-parameter transformer with 2048 context length. Theoretically, we prove PENCIL can perform universal space-efficient computation by simulating Turing machines with optimal time and space complexity, and thus can solve arbitrary computational tasks that would otherwise be intractable given context window constraints.
Quantifying Overfitting along the Regularization Path for Two-Part-Code MDL in Supervised Classification
Zhu, Xiaohan, Srebro, Nathan
We provide a complete characterization of the entire regularization curve of a modified two-part-code Minimum Description Length (MDL) learning rule for binary classification, based on an arbitrary prior or description language. Grunwald and Langford [2004] previously established the lack of asymptotic consistency, from an agnostic PAC (frequentist worst case) perspective, of the MDL rule with a penalty parameter of $\lambda=1$, suggesting that it underegularizes. Driven by interest in understanding how benign or catastrophic under-regularization and overfitting might be, we obtain a precise quantitative description of the worst case limiting error as a function of the regularization parameter $\lambda$ and noise level (or approximation error), significantly tightening the analysis of Grunwald and Langford for $\lambda=1$ and extending it to all other choices of $\lambda$.
A Theory of Learning with Autoregressive Chain of Thought
Joshi, Nirmit, Vardi, Gal, Block, Adam, Goel, Surbhi, Li, Zhiyuan, Misiakiewicz, Theodor, Srebro, Nathan
For a given base class of sequence-to-next-token generators, we consider learning prompt-to-answer mappings obtained by iterating a fixed, time-invariant generator for multiple steps, thus generating a chain-of-thought, and then taking the final token as the answer. We formalize the learning problems both when the chain-of-thought is observed and when training only on prompt-answer pairs, with the chain-of-thought latent. We analyze the sample and computational complexity both in terms of general properties of the base class (e.g. its VC dimension) and for specific base classes such as linear thresholds. We present a simple base class that allows for universal representability and computationally tractable chain-of-thought learning. Central to our development is that time invariance allows for sample complexity that is independent of the length of the chain-of-thought. Attention arises naturally in our construction.
Tight Bounds on the Binomial CDF, and the Minimum of i.i.d Binomials, in terms of KL-Divergence
Zhu, Xiaohan, Ohannessian, Mesrob I., Srebro, Nathan
We provide finite sample upper and lower bounds on the Binomial tail probability which are a direct application of Sanov's theorem. We then use these to obtain high probability upper and lower bounds on the minimum of i.i.d. Both bounds are finite sample, asymptotically tight, and expressed in terms of the KL-divergence. The purpose of this note is to provide, in a self-contained and concise way, both upper and lower bounds on the Binomial tail, and through that, on the minimum of i.i.d. The upper bound on the minimum of i.i.d.
Provable Tempered Overfitting of Minimal Nets and Typical Nets
Harel, Itamar, Hoza, William M., Vardi, Gal, Evron, Itay, Srebro, Nathan, Soudry, Daniel
We study the overfitting behavior of fully connected deep Neural Networks (NNs) with binary weights fitted to perfectly classify a noisy training set. We consider interpolation using both the smallest NN (having the minimal number of weights) and a random interpolating NN. For both learning rules, we prove overfitting is tempered. Our analysis rests on a new bound on the size of a threshold circuit consistent with a partial function. To the best of our knowledge, ours are the first theoretical results on benign or tempered overfitting that: (1) apply to deep NNs, and (2) do not require a very high or very low input dimension.
Score Design for Multi-Criteria Incentivization
Kabra, Anmol, Karzand, Mina, Lechner, Tosca, Srebro, Nathan, Wang, Serena
We present a framework for designing scores to summarize performance metrics. Our design has two multi-criteria objectives: (1) improving on scores should improve all performance metrics, and (2) achieving pareto-optimal scores should achieve pareto-optimal metrics. We formulate our design to minimize the dimensionality of scores while satisfying the objectives. We give algorithms to design scores, which are provably minimal under mild assumptions on the structure of performance metrics. This framework draws motivation from real-world practices in hospital rating systems, where misaligned scores and performance metrics lead to unintended consequences.
On the Complexity of Learning Sparse Functions with Statistical and Gradient Queries
Joshi, Nirmit, Misiakiewicz, Theodor, Srebro, Nathan
The goal of this paper is to investigate the complexity of gradient algorithms when learning sparse functions (juntas). We introduce a type of Statistical Queries ($\mathsf{SQ}$), which we call Differentiable Learning Queries ($\mathsf{DLQ}$), to model gradient queries on a specified loss with respect to an arbitrary model. We provide a tight characterization of the query complexity of $\mathsf{DLQ}$ for learning the support of a sparse function over generic product distributions. This complexity crucially depends on the loss function. For the squared loss, $\mathsf{DLQ}$ matches the complexity of Correlation Statistical Queries $(\mathsf{CSQ})$--potentially much worse than $\mathsf{SQ}$. But for other simple loss functions, including the $\ell_1$ loss, $\mathsf{DLQ}$ always achieves the same complexity as $\mathsf{SQ}$. We also provide evidence that $\mathsf{DLQ}$ can indeed capture learning with (stochastic) gradient descent by showing it correctly describes the complexity of learning with a two-layer neural network in the mean field regime and linear scaling.
The Price of Implicit Bias in Adversarially Robust Generalization
Tsilivis, Nikolaos, Frank, Natalie, Srebro, Nathan, Kempe, Julia
We study the implicit bias of optimization in robust empirical risk minimization (robust ERM) and its connection with robust generalization. In classification settings under adversarial perturbations with linear models, we study what type of regularization should ideally be applied for a given perturbation set to improve (robust) generalization. We then show that the implicit bias of optimization in robust ERM can significantly affect the robustness of the model and identify two ways this can happen; either through the optimization algorithm or the architecture. We verify our predictions in simulations with synthetic data and experimentally study the importance of implicit bias in robust ERM with deep neural networks.
The Limits and Potentials of Local SGD for Distributed Heterogeneous Learning with Intermittent Communication
Patel, Kumar Kshitij, Glasgow, Margalit, Zindari, Ali, Wang, Lingxiao, Stich, Sebastian U., Cheng, Ziheng, Joshi, Nirmit, Srebro, Nathan
Local SGD is a popular optimization method in distributed learning, often outperforming other algorithms in practice, including mini-batch SGD. Despite this success, theoretically proving the dominance of local SGD in settings with reasonable data heterogeneity has been difficult, creating a significant gap between theory and practice. In this paper, we provide new lower bounds for local SGD under existing first-order data heterogeneity assumptions, showing that these assumptions are insufficient to prove the effectiveness of local update steps. Furthermore, under these same assumptions, we demonstrate the min-max optimality of accelerated mini-batch SGD, which fully resolves our understanding of distributed optimization for several problem classes. Our results emphasize the need for better models of data heterogeneity to understand the effectiveness of local SGD in practice. Towards this end, we consider higher-order smoothness and heterogeneity assumptions, providing new upper bounds that imply the dominance of local SGD over mini-batch SGD when data heterogeneity is low.