Spinello, Luciano
Robust Visual Robot Localization Across Seasons Using Network Flows
Naseer, Tayyab (University of Freiburg) | Spinello, Luciano (University of Freiburg) | Burgard, Wolfram (University of Freiburg) | Stachniss, Cyrill (University of Bonn)
Image-based localization is an important problem in robotics and an integral part of visual mapping and navigation systems. An approach to robustly match images to previously recorded ones must be able to cope with seasonal changes especially when it is supposed to work reliably over long periods of time. In this paper, we present a novel approach to visual localization of mobile robots in outdoor environments, which is able to deal with substantial seasonal changes. We formulate image matching as a minimum cost flow problem in a data association graph to effectively exploit sequence information. This allows us to deal with non-matching image sequences that result from temporal occlusions or from visiting new places. We present extensive experimental evaluations under substantial seasonal changes. Our approach achieves accurate matching across seasons and outperforms existing state-of-the-art methods such as FABMAP2 and SeqSLAM.
A Layered Approach to People Detection in 3D Range Data
Spinello, Luciano (University of Freiburg) | Arras, Kai Oliver (University of Freiburg) | Triebel, Rudolph (ETH Zurich) | Siegwart, Roland (ETH Zurich)
People tracking is a key technology for autonomous systems, intelligent cars and social robots operating in populated environments. What makes the task difficult is that the appearance of humans in range data can change drastically as a function of body pose, distance to the sensor, self-occlusion and occlusion by other objects. In this paper we propose a novel approach to pedestrian detection in 3D range data based on supervised learning techniques to create a bank of classifiers for different height levels of the human body. In particular, our approach applies AdaBoost to train a strong classifier from geometrical and statistical features of groups of neighboring points at the same height. In a second step, the AdaBoost classifiers mutually enforce their evidence across different heights by voting into a continuous space. Pedestrians are finally found efficiently by mean-shift search for local maxima in the voting space. Experimental results carried out with 3D laser range data illustrate the robustness and efficiency of our approach even in cluttered urban environments. The learned people detector reaches a classification rate up to 96% from a single 3D scan.