Spaulding, Aaron
Large-Scale Analogical Reasoning
Chaudhri, Vinay K. (SRI International) | Heymans, Stijn J. (SRI International) | Overholtzer, Adam (SRI International) | Spaulding, Aaron (SRI International) | Wessel, Michael (SRI International)
Cognitive simulation of analogical processing can be used to answer comparison questions such as: What are the similarities and/or differences between A and B, for concepts A and B in a knowledge base (KB). Previous attempts to use a general-purpose analogical reasoner to answer such questions revealed three major problems: (a) the system presented too much information in the answer, and the salient similarity or difference was not highlighted; (b) analogical inference found some incorrect differences; and (c) some expected similarities were not found. The cause of these problems was primarily a lack of a well-curated KB and, and secondarily, algorithmic deficiencies. In this paper, relying on a well-curated biology KB, we present a specific implementation of comparison questions inspired by a general model of analogical reasoning. We present numerous examples of answers produced by the system and empirical data on answer quality to illustrate that we have addressed many of the problems of the previous system.
Inquire Biology: A Textbook that Answers Questions
Chaudhri, Vinay K. (SRI International) | Cheng, Britte (SRI International) | Overtholtzer, Adam (SRI International) | Roschelle, Jeremy (SRI International) | Spaulding, Aaron (SRI International) | Clark, Peter (Vulcan Inc.) | Greaves, Mark (Pacific Northwest National Laboratory) | Gunning, Dave (Palo Alto Research Center)
Inquire Biology is a prototype of a new kind of intelligent textbook -- one that answers students' questions, engages their interest, and improves their understanding. Inquire Biology provides unique capabilities via a knowledge representation that captures conceptual knowledge from the textbook and uses inference procedures to answer students' questions. In an initial controlled experiment, community college students using the Inquire Biology prototype outperformed students using either a hardcopy or conventional E-book version of the same biology textbook. While additional research is needed to fully develop Inquire Biology, the initial prototype clearly demonstrates the promise of applying knowledge representation and question-answering technology to electronic textbooks.
Inquire Biology: A Textbook that Answers Questions
Chaudhri, Vinay K. (SRI International) | Cheng, Britte (SRI International) | Overtholtzer, Adam (SRI International) | Roschelle, Jeremy (SRI International) | Spaulding, Aaron (SRI International) | Clark, Peter (Vulcan Inc.) | Greaves, Mark (Pacific Northwest National Laboratory) | Gunning, Dave (Palo Alto Research Center)
Inquire Biology is a prototype of a new kind of intelligent textbook — one that answers students’ questions, engages their interest, and improves their understanding. Inquire Biology provides unique capabilities via a knowledge representation that captures conceptual knowledge from the textbook and uses inference procedures to answer students’ questions. Students ask questions by typing free-form natural language queries or by selecting passages of text. The system then attempts to answer the question and also generates suggested questions related to the query or selection. The questions supported by the system were chosen to be educationally useful, for example: what is the structure of X? compare X and Y? how does X relate to Y? In user studies, students found this question-answering capability to be extremely useful while reading and while doing problem solving. In an initial controlled experiment, community college students using the Inquire Biology prototype outperformed students using either a hardcopy or conventional E-book version of the same biology textbook. While additional research is needed to fully develop Inquire Biology, the initial prototype clearly demonstrates the promise of applying knowledge representation and question-answering technology to electronic textbooks.
Project Halo Update--Progress Toward Digital Aristotle
Gunning, David (Vulcan, Inc.) | Chaudhri, Vinay K. (SRI International) | Clark, Peter E. (Boeing Research and Technology) | Barker, Ken (University of Texas at Austin) | Chaw, Shaw-Yi (University of Texas at Austin) | Greaves, Mark (Vulcan, Inc.) | Grosof, Benjamin (Vulcan, Inc.) | Leung, Alice (Raytheon BBN Technologies Corporation) | McDonald, David D. (Raytheon BBN Technologies Corporation) | Mishra, Sunil (SRI International) | Pacheco, John (SRI International) | Porter, Bruce (University of Texas at Austin) | Spaulding, Aaron (SRI International) | Tecuci, Dan (University of Texas at Austin) | Tien, Jing (SRI International)
In the winter, 2004 issue of AI Magazine, we reported Vulcan Inc.'s first step toward creating a question-answering system called "Digital Aristotle." The goal of that first step was to assess the state of the art in applied Knowledge Representation and Reasoning (KRR) by asking AI experts to represent 70 pages from the advanced placement (AP) chemistry syllabus and to deliver knowledge-based systems capable of answering questions from that syllabus. This paper reports the next step toward realizing a Digital Aristotle: we present the design and evaluation results for a system called AURA, which enables domain experts in physics, chemistry, and biology to author a knowledge base and that then allows a different set of users to ask novel questions against that knowledge base. These results represent a substantial advance over what we reported in 2004, both in the breadth of covered subjects and in the provision of sophisticated technologies in knowledge representation and reasoning, natural language processing, and question answering to domain experts and novice users.
Project Halo Update—Progress Toward Digital Aristotle
Gunning, David (Vulcan, Inc.) | Chaudhri, Vinay K. (SRI International) | Clark, Peter E. (Boeing Research and Technology) | Barker, Ken (University of Texas at Austin) | Chaw, Shaw-Yi (University of Texas at Austin) | Greaves, Mark (Vulcan, Inc.) | Grosof, Benjamin (Vulcan, Inc.) | Leung, Alice (Raytheon BBN Technologies Corporation) | McDonald, David D. (Raytheon BBN Technologies Corporation) | Mishra, Sunil (SRI International) | Pacheco, John (SRI International) | Porter, Bruce (University of Texas at Austin) | Spaulding, Aaron (SRI International) | Tecuci, Dan (University of Texas at Austin) | Tien, Jing (SRI International)
In the winter, 2004 issue of AI Magazine, we reported Vulcan Inc.'s first step toward creating a question-answering system called "Digital Aristotle." The goal of that first step was to assess the state of the art in applied Knowledge Representation and Reasoning (KRR) by asking AI experts to represent 70 pages from the advanced placement (AP) chemistry syllabus and to deliver knowledge-based systems capable of answering questions from that syllabus. This paper reports the next step toward realizing a Digital Aristotle: we present the design and evaluation results for a system called AURA, which enables domain experts in physics, chemistry, and biology to author a knowledge base and that then allows a different set of users to ask novel questions against that knowledge base. These results represent a substantial advance over what we reported in 2004, both in the breadth of covered subjects and in the provision of sophisticated technologies in knowledge representation and reasoning, natural language processing, and question answering to domain experts and novice users.
Introduction to the Special Issue on "Usable AI"
Jameson, Anthony David (DFKI) | Spaulding, Aaron (SRI International) | Yorke-Smith, Neil (American University of Beirut)
When creating algorithms or systems that are supposed to be used by people, we should be able to adopt a "binocular" view of users' interaction with intelligent systems: a view that regards the design of interaction and the design of intelligent algorithms as interrelated parts of a single design problem. This special issue offers a coherent set of articles on two levels of generality that illustrate the binocular view and help readers to adopt it.
Introduction to the Special Issue on “Usable AI”
Jameson, Anthony David (DFKI) | Spaulding, Aaron (SRI International) | Yorke-Smith, Neil (American University of Beirut)
When creating algorithms or systems that are supposed to be used by people, we should be able to adopt a “binocular” view of users’ interaction with intelligent systems: a view that regards the design of interaction and the design of intelligent algorithms as interrelated parts of a single design problem. This special issue offers a coherent set of articles on two levels of generality that illustrate the binocular view and help readers to adopt it.