Goto

Collaborating Authors

 Spaan, Matthijs T. J.


Contextual Similarity Distillation: Ensemble Uncertainties with a Single Model

arXiv.org Machine Learning

Uncertainty quantification is a critical aspect of reinforcement learning and deep learning, with numerous applications ranging from efficient exploration and stable offline reinforcement learning to outlier detection in medical diagnostics. The scale of modern neural networks, however, complicates the use of many theoretically well-motivated approaches such as full Bayesian inference. Approximate methods like deep ensembles can provide reliable uncertainty estimates but still remain computationally expensive. In this work, we propose contextual similarity distillation, a novel approach that explicitly estimates the variance of an ensemble of deep neural networks with a single model, without ever learning or evaluating such an ensemble in the first place. Our method builds on the predictable learning dynamics of wide neural networks, governed by the neural tangent kernel, to derive an efficient approximation of the predictive variance of an infinite ensemble. Specifically, we reinterpret the computation of ensemble variance as a supervised regression problem with kernel similarities as regression targets. The resulting model can estimate predictive variance at inference time with a single forward pass, and can make use of unlabeled target-domain data or data augmentations to refine its uncertainty estimates. We empirically validate our method across a variety of out-of-distribution detection benchmarks and sparse-reward reinforcement learning environments. We find that our single-model method performs competitively and sometimes superior to ensemble-based baselines and serves as a reliable signal for efficient exploration. These results, we believe, position contextual similarity distillation as a principled and scalable alternative for uncertainty quantification in reinforcement learning and general deep learning.


Positive Experience Reflection for Agents in Interactive Text Environments

arXiv.org Artificial Intelligence

Intelligent agents designed for interactive environments face significant challenges in text-based games, a domain that demands complex reasoning and adaptability. While agents based on large language models (LLMs) using self-reflection have shown promise, they struggle when initially successful and exhibit reduced effectiveness when using smaller LLMs. We introduce Sweet&Sour, a novel approach that addresses these limitations in existing reflection methods by incorporating positive experiences and managed memory to enrich the context available to the agent at decision time. Our comprehensive analysis spans both closed- and open-source LLMs and demonstrates the effectiveness of Sweet&Sour in improving agent performance, particularly in scenarios where previous approaches fall short.


Training on more Reachable Tasks for Generalisation in Reinforcement Learning

arXiv.org Artificial Intelligence

In multi-task reinforcement learning, agents train on a fixed set of tasks and have to generalise to new ones. Recent work has shown that increased exploration improves this generalisation, but it remains unclear why exactly that is. In this paper, we introduce the concept of reachability in multi-task reinforcement learning and show that an initial exploration phase increases the number of reachable tasks the agent is trained on. This, and not the increased exploration, is responsible for the improved generalisation, even to unreachable tasks. Inspired by this, we propose a novel method Explore-Go that implements such an exploration phase at the beginning of each episode. Explore-Go only modifies the way experience is collected and can be used with most existing on-policy or off-policy reinforcement learning algorithms. We demonstrate the effectiveness of our method when combined with some popular algorithms and show an increase in generalisation performance across several environments.


Epistemic Monte Carlo Tree Search

arXiv.org Artificial Intelligence

The AlphaZero/MuZero (A/MZ) family of algorithms has achieved remarkable success across various challenging domains by integrating Monte Carlo Tree Search (MCTS) with learned models. Learned models introduce epistemic uncertainty, which is caused by learning from limited data and is useful for exploration in sparse reward environments. MCTS does not account for the propagation of this uncertainty however. To address this, we introduce Epistemic MCTS (EMCTS): a theoretically motivated approach to account for the epistemic uncertainty in search and harness the search for deep exploration. In the challenging sparse-reward task of writing code in the Assembly language subleq, AZ paired with our method achieves significantly higher sample efficiency over baseline AZ. Search with EMCTS solves variations of the commonly used hard-exploration benchmark Deep Sea - which baseline A/MZ are practically unable to solve - much faster than an otherwise equivalent method that does not use search for uncertainty estimation, demonstrating significant benefits from search for epistemic uncertainty estimation.


Value Improved Actor Critic Algorithms

arXiv.org Artificial Intelligence

Many modern reinforcement learning algorithms build on the actor-critic (AC) framework: iterative improvement of a policy (the actor) using policy improvement operators and iterative approximation of the policy's value (the critic). In contrast, the popular value-based algorithm family employs improvement operators in the value update, to iteratively improve the value function directly. In this work, we propose a general extension to the AC framework that employs two separate improvement operators: one applied to the policy in the spirit of policy-based algorithms and one applied to the value in the spirit of value-based algorithms, which we dub Value-Improved AC (VI-AC). We design two practical VI-AC algorithms based in the popular online off-policy AC algorithms TD3 and DDPG. We evaluate VI-TD3 and VI-DDPG in the Mujoco benchmark and find that both improve upon or match the performance of their respective baselines in all environments tested.


Exploring LLMs as a Source of Targeted Synthetic Textual Data to Minimize High Confidence Misclassifications

arXiv.org Artificial Intelligence

Natural Language Processing (NLP) models optimized for predictive performance often make high confidence errors and suffer from vulnerability to adversarial and out-of-distribution data. Existing work has mainly focused on mitigation of such errors using either humans or an automated approach. In this study, we explore the usage of large language models (LLMs) for data augmentation as a potential solution to the issue of NLP models making wrong predictions with high confidence during classification tasks. We compare the effectiveness of synthetic data generated by LLMs with that of human data obtained via the same procedure. For mitigation, humans or LLMs provide natural language characterizations of high confidence misclassifications to generate synthetic data, which are then used to extend the training set. We conduct an extensive evaluation of our approach on three classification tasks and demonstrate its effectiveness in reducing the number of high confidence misclassifications present in the model, all while maintaining the same level of accuracy. Moreover, we find that the cost gap between humans and LLMs surpasses an order of magnitude, as LLMs attain human-like performance while being more scalable.


Distributed Influence-Augmented Local Simulators for Parallel MARL in Large Networked Systems

arXiv.org Artificial Intelligence

Due to its high sample complexity, simulation is, as of today, critical for the successful application of reinforcement learning. Many real-world problems, however, exhibit overly complex dynamics, which makes their full-scale simulation computationally slow. In this paper, we show how to decompose large networked systems of many agents into multiple local components such that we can build separate simulators that run independently and in parallel. To monitor the influence that the different local components exert on one another, each of these simulators is equipped with a learned model that is periodically trained on real trajectories. Our empirical results reveal that distributing the simulation among different processes not only makes it possible to train large multi-agent systems in just a few hours but also helps mitigate the negative effects of simultaneous learning.


When Do Off-Policy and On-Policy Policy Gradient Methods Align?

arXiv.org Machine Learning

Policy gradient methods are widely adopted reinforcement learning algorithms for tasks with continuous action spaces. These methods succeeded in many application domains, however, because of their notorious sample inefficiency their use remains limited to problems where fast and accurate simulations are available. A common way to improve sample efficiency is to modify their objective function to be computable from off-policy samples without importance sampling. A well-established off-policy objective is the excursion objective. This work studies the difference between the excursion objective and the traditional on-policy objective, which we refer to as the on-off gap. We provide the first theoretical analysis showing conditions to reduce the on-off gap while establishing empirical evidence of shortfalls arising when these conditions are not met.


The Role of Diverse Replay for Generalisation in Reinforcement Learning

arXiv.org Artificial Intelligence

In reinforcement learning (RL), key components of many algorithms are the exploration strategy and replay buffer. These strategies regulate what environment data is collected and trained on and have been extensively studied in the RL literature. In this paper, we investigate the impact of these components in the context of generalisation in multi-task RL. We investigate the hypothesis that collecting and training on more diverse data from the training environments will improve zero-shot generalisation to new tasks. We motivate mathematically and show empirically that generalisation to tasks that are "reachable'' during training is improved by increasing the diversity of transitions in the replay buffer. Furthermore, we show empirically that this same strategy also shows improvement for generalisation to similar but "unreachable'' tasks which could be due to improved generalisation of the learned latent representations.


Reinforcement Learning by Guided Safe Exploration

arXiv.org Artificial Intelligence

Safety is critical to broadening the application of reinforcement learning (RL). Often, we train RL agents in a controlled environment, such as a laboratory, before deploying them in the real world. However, the real-world target task might be unknown prior to deployment. Reward-free RL trains an agent without the reward to adapt quickly once the reward is revealed. We consider the constrained reward-free setting, where an agent (the guide) learns to explore safely without the reward signal. This agent is trained in a controlled environment, which allows unsafe interactions and still provides the safety signal. After the target task is revealed, safety violations are not allowed anymore. Thus, the guide is leveraged to compose a safe behaviour policy. Drawing from transfer learning, we also regularize a target policy (the student) towards the guide while the student is unreliable and gradually eliminate the influence of the guide as training progresses. The empirical analysis shows that this method can achieve safe transfer learning and helps the student solve the target task faster.