Sorg, Jonathan
Reward Design via Online Gradient Ascent
Sorg, Jonathan, Lewis, Richard L., Singh, Satinder P.
Recent work has demonstrated that when artificial agents are limited in their ability to achieve their goals, the agent designer can benefit by making the agent's goals different from the designer's. This gives rise to the optimization problem of designing the artificial agent's goals---in the RL framework, designing the agent's reward function. Existing attempts at solving this optimal reward problem do not leverage experience gained online during the agent's lifetime nor do they take advantage of knowledge about the agent's structure. In this work, we develop a gradient ascent approach with formal convergence guarantees for approximately solving the optimal reward problem online during an agent's lifetime. We show that our method generalizes a standard policy gradient approach, and we demonstrate its ability to improve reward functions in agents with various forms of limitations.
Variance-Based Rewards for Approximate Bayesian Reinforcement Learning
Sorg, Jonathan, Singh, Satinder, Lewis, Richard L.
The explore{exploit dilemma is one of the central challenges in Reinforcement Learning (RL). Bayesian RL solves the dilemma by providing the agent with information in the form of a prior distribution over environments; however, full Bayesian planning is intractable. Planning with the mean MDP is a common myopic approximation of Bayesian planning. We derive a novel reward bonus that is a function of the posterior distribution over environments, which, when added to the reward in planning with the mean MDP, results in an agent which explores efficiently and effectively. Although our method is similar to existing methods when given an uninformative or unstructured prior, unlike existing methods, our method can exploit structured priors. We prove that our method results in a polynomial sample complexity and empirically demonstrate its advantages in a structured exploration task.
Optimal Rewards versus Leaf-Evaluation Heuristics in Planning Agents
Sorg, Jonathan (University of Michigan) | Singh, Satinder (University of Michigan) | Lewis, Richard L. (University of Michigan)
Planning agents often lack the computational resources needed to build full planning trees for their environments. Agent designers commonly overcome this finite-horizon approximation by applying an evaluation function at the leaf-states of the planning tree. Recent work has proposed an alternative approach for overcoming computational constraints on agent design: modify the reward function. In this work, we compare this reward design approach to the common leaf-evaluation heuristic approach for improving planning agents. We show that in many agents, the reward design approach strictly subsumes the leaf-evaluation approach, i.e., there exists a reward function for every leaf-evaluation heuristic that leads to equivalent behavior, but the converse is not true. We demonstrate that this generality leads to improved performance when an agent makes approximations in addition to the finite-horizon approximation. As part of our contribution, we extend PGRD, an online reward design algorithm, to develop reward design algorithms for Sparse Sampling and UCT, two algorithms capable of planning in large state spaces.
Reward Design via Online Gradient Ascent
Sorg, Jonathan, Lewis, Richard L., Singh, Satinder P.
Recent work has demonstrated that when artificial agents are limited in their ability to achieve their goals, the agent designer can benefit by making the agent's goals different from the designer's. This gives rise to the optimization problem of designing the artificial agent's goals---in the RL framework, designing the agent's reward function. Existing attempts at solving this optimal reward problem do not leverage experience gained online during the agent's lifetime nor do they take advantage of knowledge about the agent's structure. In this work, we develop a gradient ascent approach with formal convergence guarantees for approximately solving the optimal reward problem online during an agent's lifetime. We show that our method generalizes a standard policy gradient approach, and we demonstrate its ability to improve reward functions in agents with various forms of limitations.