Song, Ziyang
DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning
DeepSeek-AI, null, Guo, Daya, Yang, Dejian, Zhang, Haowei, Song, Junxiao, Zhang, Ruoyu, Xu, Runxin, Zhu, Qihao, Ma, Shirong, Wang, Peiyi, Bi, Xiao, Zhang, Xiaokang, Yu, Xingkai, Wu, Yu, Wu, Z. F., Gou, Zhibin, Shao, Zhihong, Li, Zhuoshu, Gao, Ziyi, Liu, Aixin, Xue, Bing, Wang, Bingxuan, Wu, Bochao, Feng, Bei, Lu, Chengda, Zhao, Chenggang, Deng, Chengqi, Zhang, Chenyu, Ruan, Chong, Dai, Damai, Chen, Deli, Ji, Dongjie, Li, Erhang, Lin, Fangyun, Dai, Fucong, Luo, Fuli, Hao, Guangbo, Chen, Guanting, Li, Guowei, Zhang, H., Bao, Han, Xu, Hanwei, Wang, Haocheng, Ding, Honghui, Xin, Huajian, Gao, Huazuo, Qu, Hui, Li, Hui, Guo, Jianzhong, Li, Jiashi, Wang, Jiawei, Chen, Jingchang, Yuan, Jingyang, Qiu, Junjie, Li, Junlong, Cai, J. L., Ni, Jiaqi, Liang, Jian, Chen, Jin, Dong, Kai, Hu, Kai, Gao, Kaige, Guan, Kang, Huang, Kexin, Yu, Kuai, Wang, Lean, Zhang, Lecong, Zhao, Liang, Wang, Litong, Zhang, Liyue, Xu, Lei, Xia, Leyi, Zhang, Mingchuan, Zhang, Minghua, Tang, Minghui, Li, Meng, Wang, Miaojun, Li, Mingming, Tian, Ning, Huang, Panpan, Zhang, Peng, Wang, Qiancheng, Chen, Qinyu, Du, Qiushi, Ge, Ruiqi, Zhang, Ruisong, Pan, Ruizhe, Wang, Runji, Chen, R. J., Jin, R. L., Chen, Ruyi, Lu, Shanghao, Zhou, Shangyan, Chen, Shanhuang, Ye, Shengfeng, Wang, Shiyu, Yu, Shuiping, Zhou, Shunfeng, Pan, Shuting, Li, S. S., Zhou, Shuang, Wu, Shaoqing, Ye, Shengfeng, Yun, Tao, Pei, Tian, Sun, Tianyu, Wang, T., Zeng, Wangding, Zhao, Wanjia, Liu, Wen, Liang, Wenfeng, Gao, Wenjun, Yu, Wenqin, Zhang, Wentao, Xiao, W. L., An, Wei, Liu, Xiaodong, Wang, Xiaohan, Chen, Xiaokang, Nie, Xiaotao, Cheng, Xin, Liu, Xin, Xie, Xin, Liu, Xingchao, Yang, Xinyu, Li, Xinyuan, Su, Xuecheng, Lin, Xuheng, Li, X. Q., Jin, Xiangyue, Shen, Xiaojin, Chen, Xiaosha, Sun, Xiaowen, Wang, Xiaoxiang, Song, Xinnan, Zhou, Xinyi, Wang, Xianzu, Shan, Xinxia, Li, Y. K., Wang, Y. Q., Wei, Y. X., Zhang, Yang, Xu, Yanhong, Li, Yao, Zhao, Yao, Sun, Yaofeng, Wang, Yaohui, Yu, Yi, Zhang, Yichao, Shi, Yifan, Xiong, Yiliang, He, Ying, Piao, Yishi, Wang, Yisong, Tan, Yixuan, Ma, Yiyang, Liu, Yiyuan, Guo, Yongqiang, Ou, Yuan, Wang, Yuduan, Gong, Yue, Zou, Yuheng, He, Yujia, Xiong, Yunfan, Luo, Yuxiang, You, Yuxiang, Liu, Yuxuan, Zhou, Yuyang, Zhu, Y. X., Xu, Yanhong, Huang, Yanping, Li, Yaohui, Zheng, Yi, Zhu, Yuchen, Ma, Yunxian, Tang, Ying, Zha, Yukun, Yan, Yuting, Ren, Z. Z., Ren, Zehui, Sha, Zhangli, Fu, Zhe, Xu, Zhean, Xie, Zhenda, Zhang, Zhengyan, Hao, Zhewen, Ma, Zhicheng, Yan, Zhigang, Wu, Zhiyu, Gu, Zihui, Zhu, Zijia, Liu, Zijun, Li, Zilin, Xie, Ziwei, Song, Ziyang, Pan, Zizheng, Huang, Zhen, Xu, Zhipeng, Zhang, Zhongyu, Zhang, Zhen
We introduce our first-generation reasoning models, DeepSeek-R1-Zero and DeepSeek-R1. DeepSeek-R1-Zero, a model trained via large-scale reinforcement learning (RL) without supervised fine-tuning (SFT) as a preliminary step, demonstrates remarkable reasoning capabilities. Through RL, DeepSeek-R1-Zero naturally emerges with numerous powerful and intriguing reasoning behaviors. However, it encounters challenges such as poor readability, and language mixing. To address these issues and further enhance reasoning performance, we introduce DeepSeek-R1, which incorporates multi-stage training and cold-start data before RL. DeepSeek-R1 achieves performance comparable to OpenAI-o1-1217 on reasoning tasks. To support the research community, we open-source DeepSeek-R1-Zero, DeepSeek-R1, and six dense models (1.5B, 7B, 8B, 14B, 32B, 70B) distilled from DeepSeek-R1 based on Qwen and Llama.
DeepSeek-V3 Technical Report
DeepSeek-AI, null, Liu, Aixin, Feng, Bei, Xue, Bing, Wang, Bingxuan, Wu, Bochao, Lu, Chengda, Zhao, Chenggang, Deng, Chengqi, Zhang, Chenyu, Ruan, Chong, Dai, Damai, Guo, Daya, Yang, Dejian, Chen, Deli, Ji, Dongjie, Li, Erhang, Lin, Fangyun, Dai, Fucong, Luo, Fuli, Hao, Guangbo, Chen, Guanting, Li, Guowei, Zhang, H., Bao, Han, Xu, Hanwei, Wang, Haocheng, Zhang, Haowei, Ding, Honghui, Xin, Huajian, Gao, Huazuo, Li, Hui, Qu, Hui, Cai, J. L., Liang, Jian, Guo, Jianzhong, Ni, Jiaqi, Li, Jiashi, Wang, Jiawei, Chen, Jin, Chen, Jingchang, Yuan, Jingyang, Qiu, Junjie, Li, Junlong, Song, Junxiao, Dong, Kai, Hu, Kai, Gao, Kaige, Guan, Kang, Huang, Kexin, Yu, Kuai, Wang, Lean, Zhang, Lecong, Xu, Lei, Xia, Leyi, Zhao, Liang, Wang, Litong, Zhang, Liyue, Li, Meng, Wang, Miaojun, Zhang, Mingchuan, Zhang, Minghua, Tang, Minghui, Li, Mingming, Tian, Ning, Huang, Panpan, Wang, Peiyi, Zhang, Peng, Wang, Qiancheng, Zhu, Qihao, Chen, Qinyu, Du, Qiushi, Chen, R. J., Jin, R. L., Ge, Ruiqi, Zhang, Ruisong, Pan, Ruizhe, Wang, Runji, Xu, Runxin, Zhang, Ruoyu, Chen, Ruyi, Li, S. S., Lu, Shanghao, Zhou, Shangyan, Chen, Shanhuang, Wu, Shaoqing, Ye, Shengfeng, Ye, Shengfeng, Ma, Shirong, Wang, Shiyu, Zhou, Shuang, Yu, Shuiping, Zhou, Shunfeng, Pan, Shuting, Wang, T., Yun, Tao, Pei, Tian, Sun, Tianyu, Xiao, W. L., Zeng, Wangding, Zhao, Wanjia, An, Wei, Liu, Wen, Liang, Wenfeng, Gao, Wenjun, Yu, Wenqin, Zhang, Wentao, Li, X. Q., Jin, Xiangyue, Wang, Xianzu, Bi, Xiao, Liu, Xiaodong, Wang, Xiaohan, Shen, Xiaojin, Chen, Xiaokang, Zhang, Xiaokang, Chen, Xiaosha, Nie, Xiaotao, Sun, Xiaowen, Wang, Xiaoxiang, Cheng, Xin, Liu, Xin, Xie, Xin, Liu, Xingchao, Yu, Xingkai, Song, Xinnan, Shan, Xinxia, Zhou, Xinyi, Yang, Xinyu, Li, Xinyuan, Su, Xuecheng, Lin, Xuheng, Li, Y. K., Wang, Y. Q., Wei, Y. X., Zhu, Y. X., Zhang, Yang, Xu, Yanhong, Xu, Yanhong, Huang, Yanping, Li, Yao, Zhao, Yao, Sun, Yaofeng, Li, Yaohui, Wang, Yaohui, Yu, Yi, Zheng, Yi, Zhang, Yichao, Shi, Yifan, Xiong, Yiliang, He, Ying, Tang, Ying, Piao, Yishi, Wang, Yisong, Tan, Yixuan, Ma, Yiyang, Liu, Yiyuan, Guo, Yongqiang, Wu, Yu, Ou, Yuan, Zhu, Yuchen, Wang, Yuduan, Gong, Yue, Zou, Yuheng, He, Yujia, Zha, Yukun, Xiong, Yunfan, Ma, Yunxian, Yan, Yuting, Luo, Yuxiang, You, Yuxiang, Liu, Yuxuan, Zhou, Yuyang, Wu, Z. F., Ren, Z. Z., Ren, Zehui, Sha, Zhangli, Fu, Zhe, Xu, Zhean, Huang, Zhen, Zhang, Zhen, Xie, Zhenda, Zhang, Zhengyan, Hao, Zhewen, Gou, Zhibin, Ma, Zhicheng, Yan, Zhigang, Shao, Zhihong, Xu, Zhipeng, Wu, Zhiyu, Zhang, Zhongyu, Li, Zhuoshu, Gu, Zihui, Zhu, Zijia, Liu, Zijun, Li, Zilin, Xie, Ziwei, Song, Ziyang, Gao, Ziyi, Pan, Zizheng
We present DeepSeek-V3, a strong Mixture-of-Experts (MoE) language model with 671B total parameters with 37B activated for each token. To achieve efficient inference and cost-effective training, DeepSeek-V3 adopts Multi-head Latent Attention (MLA) and DeepSeekMoE architectures, which were thoroughly validated in DeepSeek-V2. Furthermore, DeepSeek-V3 pioneers an auxiliary-loss-free strategy for load balancing and sets a multi-token prediction training objective for stronger performance. We pre-train DeepSeek-V3 on 14.8 trillion diverse and high-quality tokens, followed by Supervised Fine-Tuning and Reinforcement Learning stages to fully harness its capabilities. Comprehensive evaluations reveal that DeepSeek-V3 outperforms other open-source models and achieves performance comparable to leading closed-source models. Despite its excellent performance, DeepSeek-V3 requires only 2.788M H800 GPU hours for its full training. In addition, its training process is remarkably stable. Throughout the entire training process, we did not experience any irrecoverable loss spikes or perform any rollbacks.
P2DFlow: A Protein Ensemble Generative Model with SE(3) Flow Matching
Jin, Yaowei, Huang, Qi, Song, Ziyang, Zheng, Mingyue, Teng, Dan, Shi, Qian
Biological processes, functions, and properties are intricately linked to the ensemble of protein conformations, rather than being solely determined by a single stable conformation. In this study, we have developed P2DFlow, a generative model based on SE(3) flow matching, to predict the structural ensembles of proteins. We specifically designed a valuable prior for the flow process and enhanced the model's ability to distinguish each intermediate state by incorporating an additional dimension to describe the ensemble data, which can reflect the physical laws governing the distribution of ensembles, so that the prior knowledge can effectively guide the generation process. When trained and evaluated on the MD datasets of ATLAS, P2DFlow outperforms other baseline models on extensive experiments, successfully capturing the observable dynamic fluctuations as evidenced in crystal structure and MD simulations. As a potential proxy agent for protein molecular simulation, the high-quality ensembles generated by P2DFlow could significantly aid in understanding protein functions across various scenarios.
MixEHR-Nest: Identifying Subphenotypes within Electronic Health Records through Hierarchical Guided-Topic Modeling
Wang, Ruohan, Wang, Zilong, Song, Ziyang, Buckeridge, David, Li, Yue
Automatic subphenotyping from electronic health records (EHRs)provides numerous opportunities to understand diseases with unique subgroups and enhance personalized medicine for patients. However, existing machine learning algorithms either focus on specific diseases for better interpretability or produce coarse-grained phenotype topics without considering nuanced disease patterns. In this study, we propose a guided topic model, MixEHR-Nest, to infer sub-phenotype topics from thousands of disease using multi-modal EHR data. Specifically, MixEHR-Nest detects multiple subtopics from each phenotype topic, whose prior is guided by the expert-curated phenotype concepts such as Phenotype Codes (PheCodes) or Clinical Classification Software (CCS) codes. We evaluated MixEHR-Nest on two EHR datasets: (1) the MIMIC-III dataset consisting of over 38 thousand patients from intensive care unit (ICU) from Beth Israel Deaconess Medical Center (BIDMC) in Boston, USA; (2) the healthcare administrative database PopHR, comprising 1.3 million patients from Montreal, Canada. Experimental results demonstrate that MixEHR-Nest can identify subphenotypes with distinct patterns within each phenotype, which are predictive for disease progression and severity. Consequently, MixEHR-Nest distinguishes between type 1 and type 2 diabetes by inferring subphenotypes using CCS codes, which do not differentiate these two subtype concepts. Additionally, MixEHR-Nest not only improved the prediction accuracy of short-term mortality of ICU patients and initial insulin treatment in diabetic patients but also revealed the contributions of subphenotypes. For longitudinal analysis, MixEHR-Nest identified subphenotypes of distinct age prevalence under the same phenotypes, such as asthma, leukemia, epilepsy, and depression. The MixEHR-Nest software is available at GitHub: https://github.com/li-lab-mcgill/MixEHR-Nest.
TrajGPT: Irregular Time-Series Representation Learning for Health Trajectory Analysis
Song, Ziyang, Lu, Qingcheng, Zhu, He, Buckeridge, David, Li, Yue
In many domains, such as healthcare, time-series data is often irregularly sampled with varying intervals between observations. This poses challenges for classical time-series models that require equally spaced data. To address this, we propose a novel time-series Transformer called Trajectory Generative Pre-trained Transformer (TrajGPT). TrajGPT employs a novel Selective Recurrent Attention (SRA) mechanism, which utilizes a data-dependent decay to adaptively filter out irrelevant past information based on contexts. By interpreting TrajGPT as discretized ordinary differential equations (ODEs), it effectively captures the underlying continuous dynamics and enables time-specific inference for forecasting arbitrary target timesteps. Experimental results demonstrate that TrajGPT excels in trajectory forecasting, drug usage prediction, and phenotype classification without requiring task-specific fine-tuning. By evolving the learned continuous dynamics, TrajGPT can interpolate and extrapolate disease risk trajectories from partially-observed time series. The visualization of predicted health trajectories shows that TrajGPT forecasts unseen diseases based on the history of clinically relevant phenotypes (i.e., contexts). Time-series representation learning plays a crucial role in various domains, as it facilitates the extraction of generalizable temporal patterns from large-scale, unlabeled data, which can then be adapted for diverse tasks (Ma et al., 2023).
OSN: Infinite Representations of Dynamic 3D Scenes from Monocular Videos
Song, Ziyang, Li, Jinxi, Yang, Bo
It has long been challenging to recover the underlying dynamic 3D scene representations from a monocular RGB video. Existing works formulate this problem into finding a single most plausible solution by adding various constraints such as depth priors and strong geometry constraints, ignoring the fact that there could be infinitely many 3D scene representations corresponding to a single dynamic video. In this paper, we aim to learn all plausible 3D scene configurations that match the input video, instead of just inferring a specific one. To achieve this ambitious goal, we introduce a new framework, called OSN. The key to our approach is a simple yet innovative object scale network together with a joint optimization module to learn an accurate scale range for every dynamic 3D object. This allows us to sample as many faithful 3D scene configurations as possible. Extensive experiments show that our method surpasses all baselines and achieves superior accuracy in dynamic novel view synthesis on multiple synthetic and real-world datasets. Most notably, our method demonstrates a clear advantage in learning fine-grained 3D scene geometry. Our code and data are available at https://github.com/vLAR-group/OSN
UNO Arena for Evaluating Sequential Decision-Making Capability of Large Language Models
Qin, Zhanyue, Wang, Haochuan, Liu, Deyuan, Song, Ziyang, Fan, Cunhang, Lv, Zhao, Wu, Jinlin, Lei, Zhen, Tu, Zhiying, Chu, Dianhui, Yu, Xiaoyan, Sui, Dianbo
Sequential decision-making refers to algorithms that take into account the dynamics of the environment, where early decisions affect subsequent decisions. With large language models (LLMs) demonstrating powerful capabilities between tasks, we can't help but ask: Can Current LLMs Effectively Make Sequential Decisions? In order to answer this question, we propose the UNO Arena based on the card game UNO to evaluate the sequential decision-making capability of LLMs and explain in detail why we choose UNO. In UNO Arena, We evaluate the sequential decision-making capability of LLMs dynamically with novel metrics based Monte Carlo methods. We set up random players, DQN-based reinforcement learning players, and LLM players (e.g. GPT-4, Gemini-pro) for comparison testing. Furthermore, in order to improve the sequential decision-making capability of LLMs, we propose the TUTRI player, which can involves having LLMs reflect their own actions wtih the summary of game history and the game strategy. Numerous experiments demonstrate that the TUTRI player achieves a notable breakthrough in the performance of sequential decision-making compared to the vanilla LLM player.
Bidirectional Generative Pre-training for Improving Time Series Representation Learning
Song, Ziyang, Lu, Qincheng, Zhu, He, Li, Yue
Learning time-series representations for discriminative tasks has been a long-standing challenge. Current pre-training methods are limited in either unidirectional next-token prediction or randomly masked token prediction. We propose a novel architecture called Bidirectional Timely Generative Pre-trained Transformer (BiTimelyGPT), which pre-trains on time-series data by both next-token and previous-token predictions in alternating transformer layers. This pre-training task preserves original distribution and data shapes of the time-series. Additionally, the full-rank forward and backward attention matrices exhibit more expressive representation capabilities. Using biosignal data, BiTimelyGPT demonstrates superior performance in predicting neurological functionality, disease diagnosis, and physiological signs. By visualizing the attention heatmap, we observe that the pre-trained BiTimelyGPT can identify discriminative segments from time-series sequences, even more so after fine-tuning on the task.
NVFi: Neural Velocity Fields for 3D Physics Learning from Dynamic Videos
Li, Jinxi, Song, Ziyang, Yang, Bo
In this paper, we aim to model 3D scene dynamics from multi-view videos. Unlike the majority of existing works which usually focus on the common task of novel view synthesis within the training time period, we propose to simultaneously learn the geometry, appearance, and physical velocity of 3D scenes only from video frames, such that multiple desirable applications can be supported, including future frame extrapolation, unsupervised 3D semantic scene decomposition, and dynamic motion transfer. Our method consists of three major components, 1) the keyframe dynamic radiance field, 2) the interframe velocity field, and 3) a joint keyframe and interframe optimization module which is the core of our framework to effectively train both networks. To validate our method, we further introduce two dynamic 3D datasets: 1) Dynamic Object dataset, and 2) Dynamic Indoor Scene dataset. We conduct extensive experiments on multiple datasets, demonstrating the superior performance of our method over all baselines, particularly in the critical tasks of future frame extrapolation and unsupervised 3D semantic scene decomposition. Our code and data are available at https://github.com/vLAR-group/NVFi
TimelyGPT: Recurrent Convolutional Transformer for Long Time-series Representation
Song, Ziyang, Lu, Qincheng, Xu, Hao, Li, Yue
Pre-trained models (PTMs) have gained prominence in Natural Language Processing and Computer Vision domains. When it comes to time-series PTMs, their development has been limited. Previous research on time-series transformers has mainly been devoted to small-scale tasks, yet these models have not consistently outperformed traditional models. Additionally, the performance of these transformers on large-scale data remains unexplored. These findings raise doubts about Transformer's capabilities to scale up and capture temporal dependencies. In this study, we re-examine time-series transformers and identify the shortcomings of prior studies. Drawing from these insights, we then introduce a pioneering architecture called Timely Generative Pre-trained Transformer (TimelyGPT). This architecture integrates recurrent attention and temporal convolution modules to effectively capture global-local temporal dependencies in long sequences. The relative position embedding with time decay can effectively deal with trend and periodic patterns from time-series. Our experiments show that TimelyGPT excels in modeling continuously monitored biosignal as well as irregularly-sampled timeseries data commonly observed in longitudinal electronic health records. This breakthrough suggests a priority shift in time-series deep learning research, moving from small-scale modeling from scratch to large-scale pre-training. Time-series data mining holds significant importance in healthcare, given its potential to trace patient health trajectories and predict medical outcomes (Ma et al., 2023b; Eldele et al., 2021; Fawaz et al., 2019). In the field of healthcare, there are two primary categories: continuous and irregularlysampled time-series data. Continuous time-series, such as biosignals, has been extensively studied in various applications including health monitoring (Stirling et al., 2020), disease classification (Phan et al., 2021), and physical activity prediction (Reiss et al., 2019b). Irregularly-sampled time series is commonly found in clinical records, where spontaneous updates are made to an individual patient's health status (Zhang et al., 2022b). The key challenge is to extract meaningful representation from these time-series, especially when there is limited labeled data available. A promising approach to overcome this constraint is to adopt transfer learning (Ma et al., 2023b). Initially, a model is pretrained on large datasets to capture temporal representation.