Song, Zirui
Injecting Domain-Specific Knowledge into Large Language Models: A Comprehensive Survey
Song, Zirui, Yan, Bin, Liu, Yuhan, Fang, Miao, Li, Mingzhe, Yan, Rui, Chen, Xiuying
Large Language Models (LLMs) have demonstrated remarkable success in various tasks such as natural language understanding, text summarization, and machine translation. However, their general-purpose nature often limits their effectiveness in domain-specific applications that require specialized knowledge, such as healthcare, chemistry, or legal analysis. To address this, researchers have explored diverse methods to enhance LLMs by integrating domain-specific knowledge. In this survey, we provide a comprehensive overview of these methods, which we categorize into four key approaches: dynamic knowledge injection, static knowledge embedding, modular adapters, and prompt optimization. Each approach offers unique mechanisms to equip LLMs with domain expertise, balancing trade-offs between flexibility, scalability, and efficiency. We discuss how these methods enable LLMs to tackle specialized tasks, compare their advantages and disadvantages, evaluate domain-specific LLMs against general LLMs, and highlight the challenges and opportunities in this emerging field. For those interested in delving deeper into this area, we also summarize the commonly used datasets and benchmarks. To keep researchers updated on the latest studies, we maintain an open-source at: https://github.com/abilliyb/Knowledge_Injection_Survey_Papers, dedicated to documenting research in the field of specialized LLM.
Foundations and Recent Trends in Multimodal Mobile Agents: A Survey
Wu, Biao, Li, Yanda, Fang, Meng, Song, Zirui, Zhang, Zhiwei, Wei, Yunchao, Chen, Ling
Mobile agents are essential for automating tasks in complex and dynamic mobile environments. As foundation models evolve, the demands for agents that can adapt in real-time and process multimodal data have grown. This survey provides a comprehensive review of mobile agent technologies, focusing on recent advancements that enhance real-time adaptability and multimodal interaction. Recent evaluation benchmarks have been developed better to capture the static and interactive environments of mobile tasks, offering more accurate assessments of agents' performance. We then categorize these advancements into two main approaches: prompt-based methods, which utilize large language models (LLMs) for instruction-based task execution, and training-based methods, which fine-tune multimodal models for mobile-specific applications. Additionally, we explore complementary technologies that augment agent performance. By discussing key challenges and outlining future research directions, this survey offers valuable insights for advancing mobile agent technologies. A comprehensive resource list is available at https://github.com/aialt/awesome-mobile-agents
From a Tiny Slip to a Giant Leap: An LLM-Based Simulation for Fake News Evolution
Liu, Yuhan, Song, Zirui, Zhang, Xiaoqing, Chen, Xiuying, Yan, Rui
With the growing spread of misinformation online, research has increasingly focused on detecting and tracking fake news. However, an overlooked issue is that fake news does not naturally exist in social networks -- it often originates from distorted facts or deliberate fabrication by malicious actors. Understanding how true news gradually evolves into fake news is critical for early detection and prevention, reducing its spread and impact. Hence, in this paper, we take the first step toward simulating and revealing this evolution, proposing a Fake News evolUtion Simulation framEwork (FUSE) based on large language models (LLMs). Specifically, we employ LLM as agents to represent individuals in a simulated social network. We define four types of agents commonly observed in daily interactions: spreaders, who propagate information; commentators, who provide opinions and interpretations; verifiers, who check the accuracy of information; and bystanders, who passively observe without engaging. For simulated environments, we model various social network structures, such as high-clustering networks and scale-free networks, to mirror real-world network dynamics. Each day, the agents engage in belief exchanges, reflect on their thought processes, and reintroduce the news accordingly. Given the lack of prior work in this area, we developed a FUSE-EVAL evaluation framework to measure the deviation from true news during the fake news evolution process. The results show that FUSE successfully captures the underlying patterns of how true news transforms into fake news and accurately reproduces previously discovered instances of fake news, aligning closely with human evaluations. Moreover, our work provides insights into the fact that combating fake news should not be delayed until it has fully evolved; instead, prevention in advance is key to achieving better outcomes.
MedINST: Meta Dataset of Biomedical Instructions
Han, Wenhan, Fang, Meng, Zhang, Zihan, Yin, Yu, Song, Zirui, Chen, Ling, Pechenizkiy, Mykola, Chen, Qingyu
The integration of large language model (LLM) techniques in the field of medical analysis has brought about significant advancements, yet the scarcity of large, diverse, and well-annotated datasets remains a major challenge. Medical data and tasks, which vary in format, size, and other parameters, require extensive preprocessing and standardization for effective use in training LLMs. To address these challenges, we introduce MedINST, the Meta Dataset of Biomedical Instructions, a novel multi-domain, multi-task instructional meta-dataset. MedINST comprises 133 biomedical NLP tasks and over 7 million training samples, making it the most comprehensive biomedical instruction dataset to date. Using MedINST as the meta dataset, we curate MedINST32, a challenging benchmark with different task difficulties aiming to evaluate LLMs' generalization ability. We fine-tune several LLMs on MedINST and evaluate on MedINST32, showcasing enhanced cross-task generalization.
Hazards in Daily Life? Enabling Robots to Proactively Detect and Resolve Anomalies
Song, Zirui, Ouyang, Guangxian, Fang, Meng, Na, Hongbin, Shi, Zijing, Chen, Zhenhao, Fu, Yujie, Zhang, Zeyu, Jiang, Shiyu, Fang, Miao, Chen, Ling, Chen, Xiuying
Existing household robots have made significant progress in performing routine tasks, such as cleaning floors or delivering objects. However, a key limitation of these robots is their inability to recognize potential problems or dangers in home environments. For example, a child may pick up and ingest medication that has fallen on the floor, posing a serious risk. We argue that household robots should proactively detect such hazards or anomalies within the home, and propose the task of anomaly scenario generation. We leverage foundational models instead of relying on manually labeled data to build simulated environments. Specifically, we introduce a multi-agent brainstorming approach, where agents collaborate and generate diverse scenarios covering household hazards, hygiene management, and child safety. These textual task descriptions are then integrated with designed 3D assets to simulate realistic environments. Within these constructed environments, the robotic agent learns the necessary skills to proactively discover and handle the proposed anomalies through task decomposition, and optimal learning approach selection. We demonstrate that our generated environment outperforms others in terms of task description and scene diversity, ultimately enabling robotic agents to better address potential household hazards.
MMAC-Copilot: Multi-modal Agent Collaboration Operating System Copilot
Song, Zirui, Li, Yaohang, Fang, Meng, Chen, Zhenhao, Shi, Zecheng, Huang, Yuan, Chen, Ling
Autonomous virtual agents are often limited by their singular mode of interaction with real-world environments, restricting their versatility. To address this, we propose the Multi-Modal Agent Collaboration framework (MMAC-Copilot), a framework utilizes the collective expertise of diverse agents to enhance interaction ability with operating systems. The framework introduces a team collaboration chain, enabling each participating agent to contribute insights based on their specific domain knowledge, effectively reducing the hallucination associated with knowledge domain gaps. To evaluate the performance of MMAC-Copilot, we conducted experiments using both the GAIA benchmark and our newly introduced Visual Interaction Benchmark (VIBench). VIBench focuses on non-API-interactable applications across various domains, including 3D gaming, recreation, and office scenarios. MMAC-Copilot achieved exceptional performance on GAIA, with an average improvement of 6.8\% over existing leading systems. Furthermore, it demonstrated remarkable capability on VIBench, particularly in managing various methods of interaction within systems and applications. These results underscore MMAC-Copilot's potential in advancing the field of autonomous virtual agents through its innovative approach to agent collaboration.
Efficient Reinforcemen Learning via Decoupling Exploration and Utilization
Yang, Jingpu, Zhao, Qirui, Wang, Helin, Huang, Yuxiao, Song, Zirui, Fang, Miao
Deep neural network(DNN) generalization is limited by the over-reliance of current offline reinforcement learning techniques on conservative processing of existing datasets. This method frequently results in algorithms that settle for suboptimal solutions that only adjust to a certain dataset. Similarly, in online reinforcement learning, the previously imposed punitive pessimism also deprives the model of its exploratory potential. Our research proposes a novel framework, Optimistic and Pessimistic Actor Reinforcement Learning (OPARL). OPARL employs a unique dual-actor approach: an optimistic actor dedicated to exploration and a pessimistic actor focused on utilization, thereby effectively differentiating between exploration and utilization strategies. This unique combination in reinforcement learning methods fosters a more balanced and efficient approach. It enables the optimization of policies that focus on actions yielding high rewards through pessimistic utilization strategies, while also ensuring extensive state coverage via optimistic exploration. Experiments and theoretical study demonstrates OPARL improves agents' capacities for application and exploration. In the most tasks of DMControl benchmark and Mujoco environment, OPARL performed better than state-of-the-art methods. Our code has released on https://github.com/yydsok/OPARL