Song, Yuxin
Mulberry: Empowering MLLM with o1-like Reasoning and Reflection via Collective Monte Carlo Tree Search
Yao, Huanjin, Huang, Jiaxing, Wu, Wenhao, Zhang, Jingyi, Wang, Yibo, Liu, Shunyu, Wang, Yingjie, Song, Yuxin, Feng, Haocheng, Shen, Li, Tao, Dacheng
In this work, we aim to develop an MLLM that understands and solves questions by learning to create each intermediate step of the reasoning involved till the final answer. To this end, we propose Collective Monte Carlo Tree Search (CoMCTS), a new learning-to-reason method for MLLMs, which introduces the concept of collective learning into ``tree search'' for effective and efficient reasoning-path searching and learning. The core idea of CoMCTS is to leverage collective knowledge from multiple models to collaboratively conjecture, search and identify effective reasoning paths toward correct answers via four iterative operations including Expansion, Simulation and Error Positioning, Backpropagation, and Selection. Using CoMCTS, we construct Mulberry-260k, a multimodal dataset with a tree of rich, explicit and well-defined reasoning nodes for each question. With Mulberry-260k, we perform collective SFT to train our model, Mulberry, a series of MLLMs with o1-like step-by-step Reasoning and Reflection capabilities. Extensive experiments demonstrate the superiority of our proposed methods on various benchmarks. Code will be available at https://github.com/HJYao00/Mulberry
A Survey on Consumer IoT Traffic: Security and Privacy
Jia, Yan, Song, Yuxin, Liu, Zihou, Tan, Qingyin, Wang, Fangming, Zhang, Yu, Liu, Zheli
For the past few years, the Consumer Internet of Things (CIoT) has entered public lives. While CIoT has improved the convenience of people's daily lives, it has also brought new security and privacy concerns. In this survey, we try to figure out what researchers can learn about the security and privacy of CIoT by traffic analysis, a popular method in the security community. From the security and privacy perspective, this survey seeks out the new characteristics in CIoT traffic analysis, the state-of-the-art progress in CIoT traffic analysis, and the challenges yet to be solved. We collected 310 papers from January 2018 to December 2023 related to CIoT traffic analysis from the security and privacy perspective and summarized the process of CIoT traffic analysis in which the new characteristics of CIoT are identified. Then, we detail existing works based on five application goals: device fingerprinting, user activity inference, malicious traffic analysis, security analysis, and measurement. At last, we discuss the new challenges and future research directions.
GRATIS: Deep Learning Graph Representation with Task-specific Topology and Multi-dimensional Edge Features
Song, Siyang, Song, Yuxin, Luo, Cheng, Song, Zhiyuan, Kuzucu, Selim, Jia, Xi, Guo, Zhijiang, Xie, Weicheng, Shen, Linlin, Gunes, Hatice
Graph is powerful for representing various types of real-world data. The topology (edges' presence) and edges' features of a graph decides the message passing mechanism among vertices within the graph. While most existing approaches only manually define a single-value edge to describe the connectivity or strength of association between a pair of vertices, task-specific and crucial relationship cues may be disregarded by such manually defined topology and single-value edge features. In this paper, we propose the first general graph representation learning framework (called GRATIS) which can generate a strong graph representation with a task-specific topology and task-specific multi-dimensional edge features from any arbitrary input. To learn each edge's presence and multi-dimensional feature, our framework takes both of the corresponding vertices pair and their global contextual information into consideration, enabling the generated graph representation to have a globally optimal message passing mechanism for different down-stream tasks. The principled investigation results achieved for various graph analysis tasks on 11 graph and non-graph datasets show that our GRATIS can not only largely enhance pre-defined graphs but also learns a strong graph representation for non-graph data, with clear performance improvements on all tasks. In particular, the learned topology and multi-dimensional edge features provide complementary task-related cues for graph analysis tasks. Our framework is effective, robust and flexible, and is a plug-and-play module that can be combined with different backbones and Graph Neural Networks (GNNs) to generate a task-specific graph representation from various graph and non-graph data. Our code is made publicly available at https://github.com/SSYSteve/Learning-Graph-Representation-with-Task-specific-Topology-and-Multi-dimensional-Edge-Features.