Song, Yuanwei
MultiTEND: A Multilingual Benchmark for Natural Language to NoSQL Query Translation
Qin, Zhiqian, Song, Yuanfeng, Lu, Jinwei, Song, Yuanwei, Li, Shuaimin, Zhang, Chen Jason
Natural language interfaces for NoSQL databases are increasingly vital in the big data era, enabling users to interact with complex, unstructured data without deep technical expertise. However, most recent advancements focus on English, leaving a gap for multilingual support. This paper introduces MultiTEND, the first and largest multilingual benchmark for natural language to NoSQL query generation, covering six languages: English, German, French, Russian, Japanese and Mandarin Chinese. Using MultiTEND, we analyze challenges in translating natural language to NoSQL queries across diverse linguistic structures, including lexical and syntactic differences. Experiments show that performance accuracy in both English and non-English settings remains relatively low, with a 4%-6% gap across scenarios like fine-tuned SLM, zero-shot LLM, and RAG for LLM. To address the aforementioned challenges, we introduce MultiLink, a novel framework that bridges the multilingual input to NoSQL query generation gap through a Parallel Linking Process. It breaks down the task into multiple steps, integrating parallel multilingual processing, Chain-of-Thought (CoT) reasoning, and Retrieval-Augmented Generation (RAG) to tackle lexical and structural challenges inherent in multilingual NoSQL generation. MultiLink shows enhancements in all metrics for every language against the top baseline, boosting execution accuracy by about 15% for English and averaging a 10% improvement for non-English languages.
Quantitative Evaluations on Saliency Methods: An Experimental Study
Li, Xiao-Hui, Shi, Yuhan, Li, Haoyang, Bai, Wei, Song, Yuanwei, Cao, Caleb Chen, Chen, Lei
It has been long debated that eXplainable AI (XAI) is an important topic, but it lacks rigorous definition and fair metrics. In this paper, we briefly summarize the status quo of the metrics, along with an exhaustive experimental study based on them, including faithfulness, localization, false-positives, sensitivity check, and stability. With the experimental results, we conclude that among all the methods we compare, no single explanation method dominates others in all metrics. Nonetheless, Gradient-weighted Class Activation Mapping (Grad-CAM) and Randomly Input Sampling for Explanation (RISE) perform fairly well in most of the metrics. Utilizing a set of filtered metrics, we further present a case study to diagnose the classification bases for models. While providing a comprehensive experimental study of metrics, we also examine measuring factors that are missed in current metrics and hope this valuable work could serve as a guide for future research.