Song, Yaoxian
Evaluating Semantic Variation in Text-to-Image Synthesis: A Causal Perspective
Zhu, Xiangru, Sun, Penglei, Song, Yaoxian, Xiao, Yanghua, Li, Zhixu, Wang, Chengyu, Huang, Jun, Yang, Bei, Xu, Xiaoxiao
Accurate interpretation and visualization of human instructions are crucial for text-to-image (T2I) synthesis. However, current models struggle to capture semantic variations from word order changes, and existing evaluations, relying on indirect metrics like text-image similarity, fail to reliably assess these challenges. This often obscures poor performance on complex or uncommon linguistic patterns by the focus on frequent word combinations. To address these deficiencies, we propose a novel metric called SemVarEffect and a benchmark named SemVarBench, designed to evaluate the causality between semantic variations in inputs and outputs in T2I synthesis. Semantic variations are achieved through two types of linguistic permutations, while avoiding easily predictable literal variations. Experiments reveal that the CogView-3-Plus and Ideogram 2 performed the best, achieving a score of 0.2/1. Semantic variations in object relations are less understood than attributes, scoring 0.07/1 compared to 0.17-0.19/1. We found that cross-modal alignment in UNet or Transformers plays a crucial role in handling semantic variations, a factor previously overlooked by a focus on textual encoders. Our work establishes an effective evaluation framework that advances the T2I synthesis community's exploration of human instruction understanding. Our benchmark and code are available at https://github.com/zhuxiangru/SemVarBench .
Learning 6-DoF Fine-grained Grasp Detection Based on Part Affordance Grounding
Song, Yaoxian, Sun, Penglei, Ren, Yi, Zheng, Yu, Zhang, Yue
Robotic grasping is a fundamental ability for a robot to interact with the environment. Current methods focus on how to obtain a stable and reliable grasping pose in object wise, while little work has been studied on part (shape)-wise grasping which is related to fine-grained grasping and robotic affordance. Parts can be seen as atomic elements to compose an object, which contains rich semantic knowledge and a strong correlation with affordance. However, lacking a large part-wise 3D robotic dataset limits the development of part representation learning and downstream application. In this paper, we propose a new large Language-guided SHape grAsPing datasEt (named Lang-SHAPE) to learn 3D part-wise affordance and grasping ability. We design a novel two-stage fine-grained robotic grasping network (named PIONEER), including a novel 3D part language grounding model, and a part-aware grasp pose detection model. To evaluate the effectiveness, we perform multi-level difficulty part language grounding grasping experiments and deploy our proposed model on a real robot. Results show our method achieves satisfactory performance and efficiency in reference identification, affordance inference, and 3D part-aware grasping. Our dataset and code are available on our project website https://sites.google.com/view/lang-shape