Song, Xingyi
Don't Waste a Single Annotation: Improving Single-Label Classifiers Through Soft Labels
Wu, Ben, Li, Yue, Mu, Yida, Scarton, Carolina, Bontcheva, Kalina, Song, Xingyi
In this paper, we address the limitations of the common data annotation and training methods for objective single-label classification tasks. Typically, when annotating such tasks annotators are only asked to provide a single label for each sample and annotator disagreement is discarded when a final hard label is decided through majority voting. We challenge this traditional approach, acknowledging that determining the appropriate label can be difficult due to the ambiguity and lack of context in the data samples. Rather than discarding the information from such ambiguous annotations, our soft label method makes use of them for training. Our findings indicate that additional annotator information, such as confidence, secondary label and disagreement, can be used to effectively generate soft labels. Training classifiers with these soft labels then leads to improved performance and calibration on the hard label test set.
Navigating Prompt Complexity for Zero-Shot Classification: A Study of Large Language Models in Computational Social Science
Mu, Yida, Wu, Ben P., Thorne, William, Robinson, Ambrose, Aletras, Nikolaos, Scarton, Carolina, Bontcheva, Kalina, Song, Xingyi
Instruction-tuned Large Language Models (LLMs) have exhibited impressive language understanding and the capacity to generate responses that follow specific prompts. However, due to the computational demands associated with training these models, their applications often adopt a zero-shot setting. In this paper, we evaluate the zero-shot performance of two publicly accessible LLMs, ChatGPT and OpenAssistant, in the context of six Computational Social Science classification tasks, while also investigating the effects of various prompting strategies. Our experiments investigate the impact of prompt complexity, including the effect of incorporating label definitions into the prompt; use of synonyms for label names; and the influence of integrating past memories during foundation model training. The findings indicate that in a zero-shot setting, current LLMs are unable to match the performance of smaller, fine-tuned baseline transformer models (such as BERT-large). Additionally, we find that different prompting strategies can significantly affect classification accuracy, with variations in accuracy and F1 scores exceeding 10\%.
Examining the Limitations of Computational Rumor Detection Models Trained on Static Datasets
Mu, Yida, Song, Xingyi, Bontcheva, Kalina, Aletras, Nikolaos
A crucial aspect of a rumor detection model is its ability to generalize, particularly its ability to detect emerging, previously unknown rumors. Past research has indicated that content-based (i.e., using solely source posts as input) rumor detection models tend to perform less effectively on unseen rumors. At the same time, the potential of context-based models remains largely untapped. The main contribution of this paper is in the in-depth evaluation of the performance gap between content and context-based models specifically on detecting new, unseen rumors. Our empirical findings demonstrate that context-based models are still overly dependent on the information derived from the rumors' source post and tend to overlook the significant role that contextual information can play. We also study the effect of data split strategies on classifier performance. Based on our experimental results, the paper also offers practical suggestions on how to minimize the effects of temporal concept drift in static datasets during the training of rumor detection methods.
Comparison between parameter-efficient techniques and full fine-tuning: A case study on multilingual news article classification
Razuvayevskaya, Olesya, Wu, Ben, Leite, Joao A., Heppell, Freddy, Srba, Ivan, Scarton, Carolina, Bontcheva, Kalina, Song, Xingyi
Adapters and Low-Rank Adaptation (LoRA) are parameter-efficient fine-tuning techniques designed to make the training of language models more efficient. Previous results demonstrated that these methods can even improve performance on some classification tasks. This paper complements the existing research by investigating how these techniques influence the classification performance and computation costs compared to full fine-tuning when applied to multilingual text classification tasks (genre, framing, and persuasion techniques detection; with different input lengths, number of predicted classes and classification difficulty), some of which have limited training data. In addition, we conduct in-depth analyses of their efficacy across different training scenarios (training on the original multilingual data; on the translations into English; and on a subset of English-only data) and different languages. Our findings provide valuable insights into the applicability of the parameter-efficient fine-tuning techniques, particularly to complex multilingual and multilabel classification tasks.
Bio-SIEVE: Exploring Instruction Tuning Large Language Models for Systematic Review Automation
Robinson, Ambrose, Thorne, William, Wu, Ben P., Pandor, Abdullah, Essat, Munira, Stevenson, Mark, Song, Xingyi
Medical systematic reviews can be very costly and resource intensive. We explore how Large Language Models (LLMs) can support and be trained to perform literature screening when provided with a detailed set of selection criteria. Specifically, we instruction tune LLaMA and Guanaco models to perform abstract screening for medical systematic reviews. Our best model, Bio-SIEVE, outperforms both ChatGPT and trained traditional approaches, and generalises better across medical domains. However, there remains the challenge of adapting the model to safety-first scenarios. We also explore the impact of multi-task training with Bio-SIEVE-Multi, including tasks such as PICO extraction and exclusion reasoning, but find that it is unable to match single-task Bio-SIEVE's performance. We see Bio-SIEVE as an important step towards specialising LLMs for the biomedical systematic review process and explore its future developmental opportunities. We release our models, code and a list of DOIs to reconstruct our dataset for reproducibility.
Finding Already Debunked Narratives via Multistage Retrieval: Enabling Cross-Lingual, Cross-Dataset and Zero-Shot Learning
Singh, Iknoor, Scarton, Carolina, Song, Xingyi, Bontcheva, Kalina
The task of retrieving already debunked narratives aims to detect stories that have already been fact-checked. The successful detection of claims that have already been debunked not only reduces the manual efforts of professional fact-checkers but can also contribute to slowing the spread of misinformation. Mainly due to the lack of readily available data, this is an understudied problem, particularly when considering the cross-lingual task, i.e. the retrieval of fact-checking articles in a language different from the language of the online post being checked. This paper fills this gap by (i) creating a novel dataset to enable research on cross-lingual retrieval of already debunked narratives, using tweets as queries to a database of fact-checking articles; (ii) presenting an extensive experiment to benchmark fine-tuned and off-the-shelf multilingual pre-trained Transformer models for this task; and (iii) proposing a novel multistage framework that divides this cross-lingual debunk retrieval task into refinement and re-ranking stages. Results show that the task of cross-lingual retrieval of already debunked narratives is challenging and off-the-shelf Transformer models fail to outperform a strong lexical-based baseline (BM25). Nevertheless, our multistage retrieval framework is robust, outperforming BM25 in most scenarios and enabling cross-domain and zero-shot learning, without significantly harming the model's performance.
Similarity-Aware Multimodal Prompt Learning for Fake News Detection
Jiang, Ye, Yu, Xiaomin, Wang, Yimin, Xu, Xiaoman, Song, Xingyi, Maynard, Diana
The standard paradigm for fake news detection mainly utilizes text information to model the truthfulness of news. However, the discourse of online fake news is typically subtle and it requires expert knowledge to use textual information to debunk fake news. Recently, studies focusing on multimodal fake news detection have outperformed text-only methods. Recent approaches utilizing the pre-trained model to extract unimodal features, or fine-tuning the pre-trained model directly, have become a new paradigm for detecting fake news. Again, this paradigm either requires a large number of training instances, or updates the entire set of pre-trained model parameters, making real-world fake news detection impractical. Furthermore, traditional multimodal methods fuse the cross-modal features directly without considering that the uncorrelated semantic representation might inject noise into the multimodal features. This paper proposes a Similarity-Aware Multimodal Prompt Learning (SAMPLE) framework. First, we incorporate prompt learning into multimodal fake news detection. Prompt learning, which only tunes prompts with a frozen language model, can reduce memory usage significantly and achieve comparable performances, compared with fine-tuning. We analyse three prompt templates with a soft verbalizer to detect fake news. In addition, we introduce the similarity-aware fusing method to adaptively fuse the intensity of multimodal representation and mitigate the noise injection via uncorrelated cross-modal features. For evaluation, SAMPLE surpasses the F1 and the accuracies of previous works on two benchmark multimodal datasets, demonstrating the effectiveness of the proposed method in detecting fake news. In addition, SAMPLE also is superior to other approaches regardless of few-shot and data-rich settings.
A Large-Scale Comparative Study of Accurate COVID-19 Information versus Misinformation
Mu, Yida, Jiang, Ye, Heppell, Freddy, Singh, Iknoor, Scarton, Carolina, Bontcheva, Kalina, Song, Xingyi
The COVID-19 pandemic led to an infodemic where an overwhelming amount of COVID-19 related content was being disseminated at high velocity through social media. This made it challenging for citizens to differentiate between accurate and inaccurate information about COVID-19. This motivated us to carry out a comparative study of the characteristics of COVID-19 misinformation versus those of accurate COVID-19 information through a large-scale computational analysis of over 242 million tweets. The study makes comparisons alongside four key aspects: 1) the distribution of topics, 2) the live status of tweets, 3) language analysis and 4) the spreading power over time. An added contribution of this study is the creation of a COVID-19 misinformation classification dataset. Finally, we demonstrate that this new dataset helps improve misinformation classification by more than 9\% based on average F1 measure.
Examining Temporalities on Stance Detection towards COVID-19 Vaccination
Mu, Yida, Jin, Mali, Bontcheva, Kalina, Song, Xingyi
Previous studies have highlighted the importance of vaccination as an effective strategy to control the transmission of the COVID-19 virus. It is crucial for policymakers to have a comprehensive understanding of the public's stance towards vaccination on a large scale. However, attitudes towards COVID-19 vaccination, such as pro-vaccine or vaccine hesitancy, have evolved over time on social media. Thus, it is necessary to account for possible temporal shifts when analysing these stances. This study aims to examine the impact of temporal concept drift on stance detection towards COVID-19 vaccination on Twitter. To this end, we evaluate a range of transformer-based models using chronological (split the training, validation and testing sets in the order of time) and random splits (randomly split these three sets) of social media data. Our findings demonstrate significant discrepancies in model performance when comparing random and chronological splits across all monolingual and multilingual datasets. Chronological splits significantly reduce the accuracy of stance classification. Therefore, real-world stance detection approaches need to be further refined to incorporate temporal factors as a key consideration.
VaxxHesitancy: A Dataset for Studying Hesitancy towards COVID-19 Vaccination on Twitter
Mu, Yida, Jin, Mali, Grimshaw, Charlie, Scarton, Carolina, Bontcheva, Kalina, Song, Xingyi
Vaccine hesitancy has been a common concern, probably since vaccines were created and, with the popularisation of social media, people started to express their concerns about vaccines online alongside those posting pro- and anti-vaccine content. Predictably, since the first mentions of a COVID-19 vaccine, social media users posted about their fears and concerns or about their support and belief into the effectiveness of these rapidly developing vaccines. Identifying and understanding the reasons behind public hesitancy towards COVID-19 vaccines is important for policy markers that need to develop actions to better inform the population with the aim of increasing vaccine take-up. In the case of COVID-19, where the fast development of the vaccines was mirrored closely by growth in anti-vaxx disinformation, automatic means of detecting citizen attitudes towards vaccination became necessary. This is an important computational social sciences task that requires data analysis in order to gain in-depth understanding of the phenomena at hand. Annotated data is also necessary for training data-driven models for more nuanced analysis of attitudes towards vaccination. To this end, we created a new collection of over 3,101 tweets annotated with users' attitudes towards COVID-19 vaccination (stance). Besides, we also develop a domain-specific language model (VaxxBERT) that achieves the best predictive performance (73.0 accuracy and 69.3 F1-score) as compared to a robust set of baselines. To the best of our knowledge, these are the first dataset and model that model vaccine hesitancy as a category distinct from pro- and anti-vaccine stance.