Song, Xiangchen
Reflection-Window Decoding: Text Generation with Selective Refinement
Tang, Zeyu, Chen, Zhenhao, Li, Loka, Song, Xiangchen, Deng, Yunlong, Shen, Yifan, Chen, Guangyi, Spirtes, Peter, Zhang, Kun
The autoregressive decoding for text generation in large language models (LLMs), while widely used, is inherently suboptimal due to the lack of a built-in mechanism to perform refinement and/or correction of the generated content. In this paper, we consider optimality in terms of the joint probability over the generated response, when jointly considering all tokens at the same time. We theoretically characterize the potential deviation of the autoregressively generated response from its globally optimal counterpart that is of the same length. Our analysis suggests that we need to be cautious when noticeable uncertainty arises during text generation, which may signal the sub-optimality of the generation history. To address the pitfall of autoregressive decoding for text generation, we propose an approach that incorporates a sliding reflection window and a pausing criterion, such that refinement and generation can be carried out interchangeably as the decoding proceeds. Our selective refinement framework strikes a balance between efficiency and optimality, and our extensive experimental results demonstrate the effectiveness of our approach.
When and How: Learning Identifiable Latent States for Nonstationary Time Series Forecasting
Li, Zijian, Cai, Ruichu, Yang, Zhenhui, Huang, Haiqin, Chen, Guangyi, Shen, Yifan, Chen, Zhengming, Song, Xiangchen, Zhang, Kun
Temporal distribution shifts are ubiquitous in time series data. One of the most popular methods assumes that the temporal distribution shift occurs uniformly to disentangle the stationary and nonstationary dependencies. But this assumption is difficult to meet, as we do not know when the distribution shifts occur. To solve this problem, we propose to learn IDentifiable latEnt stAtes (IDEA) to detect when the distribution shifts occur. Beyond that, we further disentangle the stationary and nonstationary latent states via sufficient observation assumption to learn how the latent states change. Specifically, we formalize the causal process with environment-irrelated stationary and environment-related nonstationary variables. Under mild conditions, we show that latent environments and stationary/nonstationary variables are identifiable. Based on these theories, we devise the IDEA model, which incorporates an autoregressive hidden Markov model to estimate latent environments and modular prior networks to identify latent states. The IDEA model outperforms several latest nonstationary forecasting methods on various benchmark datasets, highlighting its advantages in real-world scenarios.
Calibration-then-Calculation: A Variance Reduced Metric Framework in Deep Click-Through Rate Prediction Models
Fan, Yewen, Si, Nian, Song, Xiangchen, Zhang, Kun
Deep learning has been widely adopted across various fields, but there has been little focus on evaluating the performance of deep learning pipelines. With the increased use of large datasets and complex models, it has become common to run the training process only once and compare the result to previous benchmarks. However, this procedure can lead to imprecise comparisons due to the variance in neural network evaluation metrics. The metric variance comes from the randomness inherent in the training process of deep learning pipelines. Traditional solutions such as running the training process multiple times are usually not feasible in deep learning due to computational limitations. In this paper, we propose a new metric framework, Calibrated Loss Metric, that addresses this issue by reducing the variance in its vanilla counterpart. As a result, the new metric has a higher accuracy to detect effective modeling improvement. Our approach is supported by theoretical justifications and extensive experimental validations in the context of Deep Click-Through Rate Prediction Models.
CaRiNG: Learning Temporal Causal Representation under Non-Invertible Generation Process
Chen, Guangyi, Shen, Yifan, Chen, Zhenhao, Song, Xiangchen, Sun, Yuewen, Yao, Weiran, Liu, Xiao, Zhang, Kun
Identifying the underlying time-delayed latent causal processes in sequential data is vital for grasping temporal dynamics and making downstream reasoning. While some recent methods can robustly identify these latent causal variables, they rely on strict assumptions about the invertible generation process from latent variables to observed data. However, these assumptions are often hard to satisfy in real-world applications containing information loss. For instance, the visual perception process translates a 3D space into 2D images, or the phenomenon of persistence of vision incorporates historical data into current perceptions. To address this challenge, we establish an identifiability theory that allows for the recovery of independent latent components even when they come from a nonlinear and non-invertible mix. Using this theory as a foundation, we propose a principled approach, CaRiNG, to learn the CAusal RepresentatIon of Non-invertible Generative temporal data with identifiability guarantees. Specifically, we utilize temporal context to recover lost latent information and apply the conditions in our theory to guide the training process. Through experiments conducted on synthetic datasets, we validate that our CaRiNG method reliably identifies the causal process, even when the generation process is non-invertible. Moreover, we demonstrate that our approach considerably improves temporal understanding and reasoning in practical applications.
A Versatile Causal Discovery Framework to Allow Causally-Related Hidden Variables
Dong, Xinshuai, Huang, Biwei, Ng, Ignavier, Song, Xiangchen, Zheng, Yujia, Jin, Songyao, Legaspi, Roberto, Spirtes, Peter, Zhang, Kun
Most existing causal discovery methods rely on the assumption of no latent confounders, limiting their applicability in solving real-life problems. In this paper, we introduce a novel, versatile framework for causal discovery that accommodates the presence of causally-related hidden variables almost everywhere in the causal network (for instance, they can be effects of observed variables), based on rank information of covariance matrix over observed variables. We start by investigating the efficacy of rank in comparison to conditional independence and, theoretically, establish necessary and sufficient conditions for the identifiability of certain latent structural patterns. Furthermore, we develop a Rank-based Latent Causal Discovery algorithm, RLCD, that can efficiently locate hidden variables, determine their cardinalities, and discover the entire causal structure over both measured and hidden ones. We also show that, under certain graphical conditions, RLCD correctly identifies the Markov Equivalence Class of the whole latent causal graph asymptotically. Experimental results on both synthetic and real-world personality data sets demonstrate the efficacy of the proposed approach in finite-sample cases.
Temporally Disentangled Representation Learning under Unknown Nonstationarity
Song, Xiangchen, Yao, Weiran, Fan, Yewen, Dong, Xinshuai, Chen, Guangyi, Niebles, Juan Carlos, Xing, Eric, Zhang, Kun
In unsupervised causal representation learning for sequential data with time-delayed latent causal influences, strong identifiability results for the disentanglement of causally-related latent variables have been established in stationary settings by leveraging temporal structure. However, in nonstationary setting, existing work only partially addressed the problem by either utilizing observed auxiliary variables (e.g., class labels and/or domain indexes) as side-information or assuming simplified latent causal dynamics. Both constrain the method to a limited range of scenarios. In this study, we further explored the Markov Assumption under time-delayed causally related process in nonstationary setting and showed that under mild conditions, the independent latent components can be recovered from their nonlinear mixture up to a permutation and a component-wise transformation, without the observation of auxiliary variables. We then introduce NCTRL, a principled estimation framework, to reconstruct time-delayed latent causal variables and identify their relations from measured sequential data only. Empirical evaluations demonstrated the reliable identification of time-delayed latent causal influences, with our methodology substantially outperforming existing baselines that fail to exploit the nonstationarity adequately and then, consequently, cannot distinguish distribution shifts.
Estimating Treatment Effects from Irregular Time Series Observations with Hidden Confounders
Cao, Defu, Enouen, James, Wang, Yujing, Song, Xiangchen, Meng, Chuizheng, Niu, Hao, Liu, Yan
Causal analysis for time series data, in particular estimating individualized treatment effect (ITE), is a key task in many real-world applications, such as finance, retail, healthcare, etc. Real-world time series can include large-scale, irregular, and intermittent time series observations, raising significant challenges to existing work attempting to estimate treatment effects. Specifically, the existence of hidden confounders can lead to biased treatment estimates and complicate the causal inference process. In particular, anomaly hidden confounders which exceed the typical range can lead to high variance estimates. Moreover, in continuous time settings with irregular samples, it is challenging to directly handle the dynamics of causality. In this paper, we leverage recent advances in Lipschitz regularization and neural controlled differential equations (CDE) to develop an effective and scalable solution, namely LipCDE, to address the above challenges. LipCDE can directly model the dynamic causal relationships between historical data and outcomes with irregular samples by considering the boundary of hidden confounders given by Lipschitz-constrained neural networks. Furthermore, we conduct extensive experiments on both synthetic and real-world datasets to demonstrate the effectiveness and scalability of LipCDE.
PLOT: Prompt Learning with Optimal Transport for Vision-Language Models
Chen, Guangyi, Yao, Weiran, Song, Xiangchen, Li, Xinyue, Rao, Yongming, Zhang, Kun
With the increasing attention to large vision-language models such as CLIP, there has been a significant amount of effort dedicated to building efficient prompts. Unlike conventional methods of only learning one single prompt, we propose to learn multiple comprehensive prompts to describe diverse characteristics of categories such as intrinsic attributes or extrinsic contexts. However, directly matching each prompt to the same visual feature is problematic, as it pushes the prompts to converge to one point. To solve this problem, we propose to apply optimal transport to match the vision and text modalities. Specifically, we first model images and the categories with visual and textual feature sets. Then, we apply a two-stage optimization strategy to learn the prompts. In the inner loop, we optimize the optimal transport distance to align visual features and prompts by the Sinkhorn algorithm, while in the outer loop, we learn the prompts by this distance from the supervised data. Extensive experiments are conducted on the few-shot recognition task and the improvement demonstrates the superiority of our method. The code is available at https://github.com/CHENGY12/PLOT.
Learning Task-Aware Effective Brain Connectivity for fMRI Analysis with Graph Neural Networks
Yu, Yue, Kan, Xuan, Cui, Hejie, Xu, Ran, Zheng, Yujia, Song, Xiangchen, Zhu, Yanqiao, Zhang, Kun, Nabi, Razieh, Guo, Ying, Zhang, Chao, Yang, Carl
Functional magnetic resonance imaging (fMRI) has become one of the most common imaging modalities for brain function analysis. Recently, graph neural networks (GNN) have been adopted for fMRI analysis with superior performance. Unfortunately, traditional functional brain networks are mainly constructed based on similarities among region of interests (ROI), which are noisy and agnostic to the downstream prediction tasks and can lead to inferior results for GNN-based models. To better adapt GNNs for fMRI analysis, we propose TBDS, an end-to-end framework based on \underline{T}ask-aware \underline{B}rain connectivity \underline{D}AG (short for Directed Acyclic Graph) \underline{S}tructure generation for fMRI analysis. The key component of TBDS is the brain network generator which adopts a DAG learning approach to transform the raw time-series into task-aware brain connectivities. Besides, we design an additional contrastive regularization to inject task-specific knowledge during the brain network generation process. Comprehensive experiments on two fMRI datasets, namely Adolescent Brain Cognitive Development (ABCD) and Philadelphia Neuroimaging Cohort (PNC) datasets demonstrate the efficacy of TBDS. In addition, the generated brain networks also highlight the prediction-related brain regions and thus provide unique interpretations of the prediction results. Our implementation will be published to https://github.com/yueyu1030/TBDS upon acceptance.
TaxoEnrich: Self-Supervised Taxonomy Completion via Structure-Semantic Representations
Jiang, Minhao, Song, Xiangchen, Zhang, Jieyu, Han, Jiawei
Taxonomies are fundamental to many real-world applications in various domains, serving as structural representations of knowledge. To deal with the increasing volume of new concepts needed to be organized as taxonomies, researchers turn to automatically completion of an existing taxonomy with new concepts. In this paper, we propose TaxoEnrich, a new taxonomy completion framework, which effectively leverages both semantic features and structural information in the existing taxonomy and offers a better representation of candidate position to boost the performance of taxonomy completion. Specifically, TaxoEnrich consists of four components: (1) taxonomy-contextualized embedding which incorporates both semantic meanings of concept and taxonomic relations based on powerful pretrained language models; (2) a taxonomy-aware sequential encoder which learns candidate position representations by encoding the structural information of taxonomy; (3) a query-aware sibling encoder which adaptively aggregates candidate siblings to augment candidate position representations based on their importance to the query-position matching; (4) a query-position matching model which extends existing work with our new candidate position representations. Extensive experiments on four large real-world datasets from different domains show that \TaxoEnrich achieves the best performance among all evaluation metrics and outperforms previous state-of-the-art methods by a large margin.