Song, Weiwei
LIR-LIVO: A Lightweight,Robust LiDAR/Vision/Inertial Odometry with Illumination-Resilient Deep Features
Zhou, Shujie, Wang, Zihao, Dai, Xinye, Song, Weiwei, Gu, Shengfeng
In this paper, we propose LIR-LIVO, a lightweight and robust LiDAR-inertial-visual odometry system designed for challenging illumination and degraded environments. The proposed method leverages deep learning-based illumination-resilient features and LiDAR-Inertial-Visual Odometry (LIVO). By incorporating advanced techniques such as uniform depth distribution of features enabled by depth association with LiDAR point clouds and adaptive feature matching utilizing Superpoint and LightGlue, LIR-LIVO achieves state-of-the-art (SOTA) accuracy and robustness with low computational cost. Experiments are conducted on benchmark datasets, including NTU-VIRAL, Hilti'22, and R3LIVE-Dataset. The corresponding results demonstrate that our proposed method outperforms other SOTA methods on both standard and challenging datasets. Particularly, the proposed method demonstrates robust pose estimation under poor ambient lighting conditions in the Hilti'22 dataset. The code of this work is publicly accessible on GitHub to facilitate advancements in the robotics community.
A LiDAR-Inertial SLAM Tightly-Coupled with Dropout-Tolerant GNSS Fusion for Autonomous Mine Service Vehicles
Wang, Yusheng, Lou, Yidong, Song, Weiwei, Zhan, Bing, Xia, Feihuang, Duan, Qigeng
Multi-modal sensor integration has become a crucial prerequisite for the real-world navigation systems. Recent studies have reported successful deployment of such system in many fields. However, it is still challenging for navigation tasks in mine scenes due to satellite signal dropouts, degraded perception, and observation degeneracy. To solve this problem, we propose a LiDAR-inertial odometry method in this paper, utilizing both Kalman filter and graph optimization. The front-end consists of multiple parallel running LiDAR-inertial odometries, where the laser points, IMU, and wheel odometer information are tightly fused in an error-state Kalman filter. Instead of the commonly used feature points, we employ surface elements for registration. The back-end construct a pose graph and jointly optimize the pose estimation results from inertial, LiDAR odometry, and global navigation satellite system (GNSS). Since the vehicle has a long operation time inside the tunnel, the largely accumulated drift may be not fully by the GNSS measurements. We hereby leverage a loop closure based re-initialization process to achieve full alignment. In addition, the system robustness is improved through handling data loss, stream consistency, and estimation error. The experimental results show that our system has a good tolerance to the long-period degeneracy with the cooperation different LiDARs and surfel registration, achieving meter-level accuracy even for tens of minutes running during GNSS dropouts.
Four years of multi-modal odometry and mapping on the rail vehicles
Wang, Yusheng, Song, Weiwei, Zhang, Yi, Huang, Fei, Tu, Zhiyong, Li, Ruoying, Zhang, Shimin, Lou, Yidong
Precise, seamless, and efficient train localization as well as long-term railway environment monitoring is the essential property towards reliability, availability, maintainability, and safety (RAMS) engineering for railroad systems. Simultaneous localization and mapping (SLAM) is right at the core of solving the two problems concurrently. In this end, we propose a high-performance and versatile multi-modal framework in this paper, targeted for the odometry and mapping task for various rail vehicles. Our system is built atop an inertial-centric state estimator that tightly couples light detection and ranging (LiDAR), visual, optionally satellite navigation and map-based localization information with the convenience and extendibility of loosely coupled methods. The inertial sensors IMU and wheel encoder are treated as the primary sensor, which achieves the observations from subsystems to constrain the accelerometer and gyroscope biases. Compared to point-only LiDAR-inertial methods, our approach leverages more geometry information by introducing both track plane and electric power pillars into state estimation. The Visual-inertial subsystem also utilizes the environmental structure information by employing both lines and points. Besides, the method is capable of handling sensor failures by automatic reconfiguration bypassing failure modules. Our proposed method has been extensively tested in the long-during railway environments over four years, including general-speed, high-speed and metro, both passenger and freight traffic are investigated. Further, we aim to share, in an open way, the experience, problems, and successes of our group with the robotics community so that those that work in such environments can avoid these errors. In this view, we open source some of the datasets to benefit the research community.