Goto

Collaborating Authors

 Song, Nan


Bridging Past and Future: End-to-End Autonomous Driving with Historical Prediction and Planning

arXiv.org Artificial Intelligence

End-to-end autonomous driving unifies tasks in a differentiable framework, enabling planning-oriented optimization and attracting growing attention. Current methods aggregate historical information either through dense historical bird's-eye-view (BEV) features or by querying a sparse memory bank, following paradigms inherited from detection. However, we argue that these paradigms either omit historical information in motion planning or fail to align with its multi-step nature, which requires predicting or planning multiple future time steps. In line with the philosophy of future is a continuation of past, we propose BridgeAD, which reformulates motion and planning queries as multi-step queries to differentiate the queries for each future time step. This design enables the effective use of historical prediction and planning by applying them to the appropriate parts of the end-to-end system based on the time steps, which improves both perception and motion planning. Specifically, historical queries for the current frame are combined with perception, while queries for future frames are integrated with motion planning. In this way, we bridge the gap between past and future by aggregating historical insights at every time step, enhancing the overall coherence and accuracy of the end-to-end autonomous driving pipeline. Extensive experiments on the nuScenes dataset in both open-loop and closed-loop settings demonstrate that BridgeAD achieves state-of-the-art performance.


Towards Lifelong Few-Shot Customization of Text-to-Image Diffusion

arXiv.org Artificial Intelligence

Lifelong few-shot customization for text-to-image diffusion aims to continually generalize existing models for new tasks with minimal data while preserving old knowledge. Current customization diffusion models excel in few-shot tasks but struggle with catastrophic forgetting problems in lifelong generations. In this study, we identify and categorize the catastrophic forgetting problems into two folds: relevant concepts forgetting and previous concepts forgetting. To address these challenges, we first devise a data-free knowledge distillation strategy to tackle relevant concepts forgetting. Unlike existing methods that rely on additional real data or offline replay of original concept data, our approach enables on-the-fly knowledge distillation to retain the previous concepts while learning new ones, without accessing any previous data. Second, we develop an In-Context Generation (ICGen) paradigm that allows the diffusion model to be conditioned upon the input vision context, which facilitates the few-shot generation and mitigates the issue of previous concepts forgetting. Extensive experiments show that the proposed Lifelong Few-Shot Diffusion (LFS-Diffusion) method can produce high-quality and accurate images while maintaining previously learned knowledge.


DeMo: Decoupling Motion Forecasting into Directional Intentions and Dynamic States

arXiv.org Artificial Intelligence

Accurate motion forecasting for traffic agents is crucial for ensuring the safety and efficiency of autonomous driving systems in dynamically changing environments. Mainstream methods adopt a one-query-one-trajectory paradigm, where each query corresponds to a unique trajectory for predicting multi-modal trajectories. While straightforward and effective, the absence of detailed representation of future trajectories may yield suboptimal outcomes, given that the agent states dynamically evolve over time. To address this problem, we introduce DeMo, a framework that decouples multi-modal trajectory queries into two types: mode queries capturing distinct directional intentions and state queries tracking the agent's dynamic states over time. By leveraging this format, we separately optimize the multi-modality and dynamic evolutionary properties of trajectories. Subsequently, the mode and state queries are integrated to obtain a comprehensive and detailed representation of the trajectories. To achieve these operations, we additionally introduce combined Attention and Mamba techniques for global information aggregation and state sequence modeling, leveraging their respective strengths. Extensive experiments on both the Argoverse 2 and nuScenes benchmarks demonstrate that our DeMo achieves state-of-the-art performance in motion forecasting.


MEMD-ABSA: A Multi-Element Multi-Domain Dataset for Aspect-Based Sentiment Analysis

arXiv.org Artificial Intelligence

Aspect-based sentiment analysis is a long-standing research interest in the field of opinion mining, and in recent years, researchers have gradually shifted their focus from simple ABSA subtasks to end-to-end multi-element ABSA tasks. However, the datasets currently used in the research are limited to individual elements of specific tasks, usually focusing on in-domain settings, ignoring implicit aspects and opinions, and with a small data scale. To address these issues, we propose a large-scale Multi-Element Multi-Domain dataset (MEMD) that covers the four elements across five domains, including nearly 20,000 review sentences and 30,000 quadruples annotated with explicit and implicit aspects and opinions for ABSA research. Meanwhile, we evaluate generative and non-generative baselines on multiple ABSA subtasks under the open domain setting, and the results show that open domain ABSA as well as mining implicit aspects and opinions remain ongoing challenges to be addressed. The datasets are publicly released at \url{https://github.com/NUSTM/MEMD-ABSA}.


Few-Shot Incremental Learning with Continually Evolved Classifiers

arXiv.org Artificial Intelligence

Few-shot class-incremental learning (FSCIL) aims to design machine learning algorithms that can continually learn new concepts from a few data points, without forgetting knowledge of old classes. The difficulty lies in that limited data from new classes not only lead to significant overfitting issues but also exacerbate the notorious catastrophic forgetting problems. Moreover, as training data come in sequence in FSCIL, the learned classifier can only provide discriminative information in individual sessions, while FSCIL requires all classes to be involved for evaluation. In this paper, we address the FSCIL problem from two aspects. First, we adopt a simple but effective decoupled learning strategy of representations and classifiers that only the classifiers are updated in each incremental session, which avoids knowledge forgetting in the representations. By doing so, we demonstrate that a pre-trained backbone plus a non-parametric class mean classifier can beat state-of-the-art methods. Second, to make the classifiers learned on individual sessions applicable to all classes, we propose a Continually Evolved Classifier (CEC) that employs a graph model to propagate context information between classifiers for adaptation. To enable the learning of CEC, we design a pseudo incremental learning paradigm that episodically constructs a pseudo incremental learning task to optimize the graph parameters by sampling data from the base dataset. Experiments on three popular benchmark datasets, including CIFAR100, miniImageNet, and Caltech-USCD Birds-200-2011 (CUB200), show that our method significantly outperforms the baselines and sets new state-of-the-art results with remarkable advantages.