Plotting

 Song, Linqi


Benchmarking LLMs for Optimization Modeling and Enhancing Reasoning via Reverse Socratic Synthesis

arXiv.org Artificial Intelligence

Large language models (LLMs) have exhibited their problem-solving ability in mathematical reasoning. Solving realistic optimization (OPT) problems in industrial application scenarios requires advanced and applied math ability. However, current OPT benchmarks that merely solve linear programming are far from complex realistic situations. In this work, we propose E-OPT, a benchmark for end-to-end optimization problem-solving with human-readable inputs and outputs. E-OPT contains rich optimization problems, including linear/nonlinear programming with/without table data, which can comprehensively evaluate LLMs' solving ability. In our benchmark, LLMs are required to correctly understand the problem in E-OPT and call code solver to get precise numerical answers. Furthermore, to alleviate the data scarcity for optimization problems, and to bridge the gap between open-source LLMs on a small scale (e.g., Llama-2-7b and Llama-3-8b) and closed-source LLMs (e.g., GPT-4), we further propose a novel data synthesis method namely ReSocratic. Unlike general data synthesis methods that proceed from questions to answers, ReSocratic first incrementally synthesizes optimization scenarios with mathematical formulations step by step and then back-translates the generated scenarios into questions. In such a way, we construct the ReSocratic-29k dataset from a small seed sample pool with the powerful open-source large model DeepSeek-V2. To demonstrate the effectiveness of ReSocratic, we conduct supervised fine-tuning with ReSocratic-29k on multiple open-source models. The results show that Llama3-8b is significantly improved from 13.6% to 51.7% on E-OPT, while DeepSeek-V2 reaches 61.0%, approaching 65.5% of GPT-4.


FVEL: Interactive Formal Verification Environment with Large Language Models via Theorem Proving

arXiv.org Artificial Intelligence

Formal verification (FV) has witnessed growing significance with current emerging program synthesis by the evolving large language models (LLMs). However, current formal verification mainly resorts to symbolic verifiers or hand-craft rules, resulting in limitations for extensive and flexible verification. On the other hand, formal languages for automated theorem proving, such as Isabelle, as another line of rigorous verification, are maintained with comprehensive rules and theorems. In this paper, we propose FVEL, an interactive Formal Verification Environment with LLMs. Specifically, FVEL transforms a given code to be verified into Isabelle, and then conducts verification via neural automated theorem proving with an LLM. The joined paradigm leverages the rigorous yet abundant formulated and organized rules in Isabelle and is also convenient for introducing and adjusting cutting-edge LLMs. To achieve this goal, we extract a large-scale FVELER3. The FVELER dataset includes code dependencies and verification processes that are formulated in Isabelle, containing 758 theories, 29,125 lemmas, and 200,646 proof steps in total with in-depth dependencies. We benchmark FVELER in the FVEL environment by first fine-tuning LLMs with FVELER and then evaluating them on Code2Inv and SV-COMP. The results show that FVEL with FVELER fine-tuned Llama3- 8B solves 17.39% (69 -> 81) more problems, and Mistral-7B 12% (75 -> 84) more problems in SV-COMP. And the proportion of proof errors is reduced. Project page: https://fveler.github.io/.


Understanding and Patching Compositional Reasoning in LLMs

arXiv.org Artificial Intelligence

LLMs have marked a revolutonary shift, yet they falter when faced with compositional reasoning tasks. Our research embarks on a quest to uncover the root causes of compositional reasoning failures of LLMs, uncovering that most of them stem from the improperly generated or leveraged implicit reasoning results. Inspired by our empirical findings, we resort to Logit Lens and an intervention experiment to dissect the inner hidden states of LLMs. This deep dive reveals that implicit reasoning results indeed surface within middle layers and play a causative role in shaping the final explicit reasoning results. Our exploration further locates multi-head self-attention (MHSA) modules within these layers, which emerge as the linchpins in accurate generation and leveraing of implicit reasoning results. Grounded on the above findings, we develop CREME, a lightweight method to patch errors in compositional reasoning via editing the located MHSA modules. Our empirical evidence stands testament to CREME's effectiveness, paving the way for autonomously and continuously enhancing compositional reasoning capabilities in language models.


Bi-Chainer: Automated Large Language Models Reasoning with Bidirectional Chaining

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have shown human-like reasoning abilities but still face challenges in solving complex logical problems. Existing unidirectional chaining methods, such as forward chaining and backward chaining, suffer from issues like low prediction accuracy and efficiency. To address these, we propose a bidirectional chaining method, Bi-Chainer, which dynamically switches to depth-first reasoning in the opposite reasoning direction when it encounters multiple branching options within the current direction. Thus, the intermediate reasoning results can be utilized as guidance to facilitate the reasoning process. We show that Bi-Chainer achieves sizable accuracy boots over unidirectional chaining frameworks on four challenging logical reasoning datasets. Moreover, Bi-Chainer enhances the accuracy of intermediate proof steps and reduces the average number of inference calls, resulting in more efficient and accurate reasoning.


Rotation and Permutation for Advanced Outlier Management and Efficient Quantization of LLMs

arXiv.org Artificial Intelligence

Quantizing large language models (LLMs) presents significant challenges, primarily due to outlier activations that compromise the efficiency of low-bit representation. Traditional approaches mainly focus on solving Normal Outliers-activations with consistently high magnitudes across all tokens. However, these techniques falter when dealing with Massive Outliers, which are significantly higher in value and often cause substantial performance losses during low-bit quantization. In this study, we propose DuQuant, an innovative quantization strategy employing rotation and permutation transformations to more effectively eliminate both types of outliers. Initially, DuQuant constructs rotation matrices informed by specific outlier dimensions, redistributing these outliers across adjacent channels within different rotation blocks. Subsequently, a zigzag permutation is applied to ensure a balanced distribution of outliers among blocks, minimizing block-wise variance. An additional rotation further enhances the smoothness of the activation landscape, thereby improving model performance. DuQuant streamlines the quantization process and demonstrates superior outlier management, achieving top-tier results in multiple tasks with various LLM architectures even under 4-bit weight-activation quantization. Our code is available at https://github.com/Hsu1023/DuQuant.


Privacy in LLM-based Recommendation: Recent Advances and Future Directions

arXiv.org Artificial Intelligence

Nowadays, large language models (LLMs) have been integrated with conventional recommendation models to improve recommendation performance. However, while most of the existing works have focused on improving the model performance, the privacy issue has only received comparatively less attention. In this paper, we review recent advancements in privacy within LLM-based recommendation, categorizing them into privacy attacks and protection mechanisms. Additionally, we highlight several challenges and propose future directions for the community to address these critical problems.


Benchmarking and Improving Compositional Generalization of Multi-aspect Controllable Text Generation

arXiv.org Artificial Intelligence

Compositional generalization, representing the model's ability to generate text with new attribute combinations obtained by recombining single attributes from the training data, is a crucial property for multi-aspect controllable text generation (MCTG) methods. Nonetheless, a comprehensive compositional generalization evaluation benchmark of MCTG is still lacking. We propose CompMCTG, a benchmark encompassing diverse multi-aspect labeled datasets and a crafted three-dimensional evaluation protocol, to holistically evaluate the compositional generalization of MCTG approaches. We observe that existing MCTG works generally confront a noticeable performance drop in compositional testing. To mitigate this issue, we introduce Meta-MCTG, a training framework incorporating meta-learning, where we enable models to learn how to generalize by simulating compositional generalization scenarios in the training phase. We demonstrate the effectiveness of Meta-MCTG through achieving obvious improvement (by at most 3.64%) for compositional testing performance in 94.4% cases.


MUSTARD: Mastering Uniform Synthesis of Theorem and Proof Data

arXiv.org Artificial Intelligence

Recent large language models (LLMs) have witnessed significant advancement in various tasks, including mathematical reasoning and theorem proving. As these two tasks require strict and formal multi-step inference, they are appealing domains for exploring the reasoning ability of LLMs but still face important challenges. Previous studies such as Chain-of-Thought (CoT) have revealed the effectiveness of intermediate steps guidance. However, such step-wise annotation requires heavy labor, leading to insufficient training steps for current benchmarks. To fill this gap, this work introduces MUSTARD, a data generation framework that masters uniform synthesis of theorem and proof data of high quality and diversity. MUSTARD synthesizes data in three stages: (1) It samples a few mathematical concept seeds as the problem category. (2) Then, it prompts a generative language model with the sampled concepts to obtain both the problems and their step-wise formal solutions. (3) Lastly, the framework utilizes a proof assistant (e.g., Lean Prover) to filter the valid proofs. With the proposed MUSTARD, we present a theorem-and-proof benchmark MUSTARDSAUCE with 5,866 valid data points. Each data point contains an informal statement, an informal proof, and a translated formal proof that passes the prover validation. We perform extensive analysis and demonstrate that MUSTARD generates validated high-quality step-by-step data. We further apply the MUSTARDSAUCE for fine-tuning smaller language models. The fine-tuned Llama 2-7B achieves a 15.41% average relative performance gain in automated theorem proving, and 8.18% in math word problems. Codes and data are available at https://github.com/Eleanor-H/MUSTARD.


Learning From Correctness Without Prompting Makes LLM Efficient Reasoner

arXiv.org Artificial Intelligence

Large language models (LLMs) have demonstrated outstanding performance across various tasks, yet they still exhibit limitations such as hallucination, unfaithful reasoning, and toxic content. One potential approach to mitigate these issues is learning from human or external feedback (e.g. tools). In this paper, we introduce an intrinsic self-correct reasoning framework for LLMs that eliminates the need for human feedback, external tools, and handcraft prompts. The proposed framework, based on a multi-step reasoning paradigm \textbf{Le}arning from \textbf{Co}rrectness (\textsc{LeCo}), improves reasoning performance without needing to learn from errors. This paradigm prioritizes learning from correct reasoning steps, and a unique method to measure confidence for each reasoning step based on generation logits. Experimental results across various multi-step reasoning tasks demonstrate the effectiveness of the framework in improving reasoning performance with reduced token consumption.


Can LLM Substitute Human Labeling? A Case Study of Fine-grained Chinese Address Entity Recognition Dataset for UAV Delivery

arXiv.org Artificial Intelligence

We present CNER-UAV, a fine-grained \textbf{C}hinese \textbf{N}ame \textbf{E}ntity \textbf{R}ecognition dataset specifically designed for the task of address resolution in \textbf{U}nmanned \textbf{A}erial \textbf{V}ehicle delivery systems. The dataset encompasses a diverse range of five categories, enabling comprehensive training and evaluation of NER models. To construct this dataset, we sourced the data from a real-world UAV delivery system and conducted a rigorous data cleaning and desensitization process to ensure privacy and data integrity. The resulting dataset, consisting of around 12,000 annotated samples, underwent human experts and \textbf{L}arge \textbf{L}anguage \textbf{M}odel annotation. We evaluated classical NER models on our dataset and provided in-depth analysis. The dataset and models are publicly available at \url{https://github.com/zhhvvv/CNER-UAV}.