Goto

Collaborating Authors

 Song, Guanqun


Beyond the Frame: Single and mutilple video summarization method with user-defined length

arXiv.org Artificial Intelligence

Video smmarization is a crucial method to reduce the time of videos which reduces the spent time to watch/review a long video. This apporach has became more important as the amount of publisehed video is increasing everyday. A single or multiple videos can be summarized into a relatively short video using various of techniques from multimodal audio-visual techniques, to natural language processing approaches. Audiovisual techniques may be used to recognize significant visual events and pick the most important parts, while NLP techniques can be used to evaluate the audio transcript and extract the main sentences (timestamps) and corresponding video frames from the original video. Another approach is to use the best of both domain. Meaning that we can use audio-visual cues as well as video transcript to extract and summarize the video. In this paper, we combine a variety of NLP techniques (extractive and contect-based summarizers) with video processing techniques to convert a long video into a single relatively short video. We design this toll in a way that user can specify the relative length of the summarized video. We have also explored ways of summarizing and concatenating multiple videos into a single short video which will help having most important concepts from the same subject in a single short video. Out approach shows that video summarizing is a difficult but significant work, with substantial potential for further research and development, and it is possible thanks to the development of NLP models.


Data Classification With Multiprocessing

arXiv.org Artificial Intelligence

Classification is one of the most important tasks in Machine Learning (ML) and with recent advancements in artificial intelligence (AI) it is important to find efficient ways to implement it. Generally, the choice of classification algorithm depends on the data it is dealing with, and accuracy of the algorithm depends on the hyperparameters it is tuned with. One way is to check the accuracy of the algorithms by executing it with different hyperparameters serially and then selecting the parameters that give the highest accuracy to predict the final output. This paper proposes another way where the algorithm is parallelly trained with different hyperparameters to reduce the execution time. In the end, results from all the trained variations of the algorithms are ensembled to exploit the parallelism and improve the accuracy of prediction. Python multiprocessing is used to test this hypothesis with different classification algorithms such as K-Nearest Neighbors (KNN), Support Vector Machines (SVM), random forest and decision tree and reviews factors affecting parallelism. Ensembled output considers the predictions from all processes and final class is the one predicted by maximum number of processes. Doing this increases the reliability of predictions. We conclude that ensembling improves accuracy and multiprocessing reduces execution time for selected algorithms.


Efficient Semantic Segmentation on Edge Devices

arXiv.org Artificial Intelligence

Semantic segmentation works on the computer vision algorithm for assigning each pixel of an image into a class. The task of semantic segmentation should be performed with both accuracy and efficiency. Most of the existing deep FCNs yield to heavy computations and these networks are very power hungry, unsuitable for real-time applications on portable devices. This project analyzes current semantic segmentation models to explore the feasibility of applying these models for emergency response during catastrophic events. We compare the performance of real-time semantic segmentation models with non-real-time counterparts constrained by aerial images under oppositional settings. Furthermore, we train several models on the Flood-Net dataset, containing UAV images captured after Hurricane Harvey, and benchmark their execution on special classes such as flooded buildings vs. non-flooded buildings or flooded roads vs. non-flooded roads. In this project, we developed a real-time UNet based model and deployed that network on Jetson AGX Xavier module.