Goto

Collaborating Authors

 Song, Eunwoo


Unified Speech-Text Pretraining for Spoken Dialog Modeling

arXiv.org Artificial Intelligence

While recent work shows promising results in expanding the capabilities of large language models (LLM) to directly understand and synthesize speech, an LLM-based strategy for modeling spoken dialogs remains elusive and calls for further investigation. This work proposes an extensive speech-text LLM framework, named the Unified Spoken Dialog Model (USDM), to generate coherent spoken responses with organic prosodic features relevant to the given input speech without relying on automatic speech recognition (ASR) or text-to-speech (TTS) solutions. Our approach employs a multi-step speech-text inference scheme that leverages chain-of-reasoning capabilities exhibited by the underlying LLM. We also propose a generalized speech-text pretraining scheme that helps with capturing cross-modal semantics. Automatic and human evaluations show that the proposed approach is effective in generating natural-sounding spoken responses, outperforming both prior and cascaded baselines. Detailed comparative studies reveal that, despite the cascaded approach being stronger in individual components, the joint speech-text modeling improves robustness against recognition errors and speech quality. Demo is available at https://unifiedsdm.github.io.


Period VITS: Variational Inference with Explicit Pitch Modeling for End-to-end Emotional Speech Synthesis

arXiv.org Artificial Intelligence

Several fully end-to-end text-to-speech (TTS) models have been proposed that have shown better performance compared to cascade models (i.e., training acoustic and vocoder models separately). However, they often generate unstable pitch contour with audible artifacts when the dataset contains emotional attributes, i.e., large diversity of pronunciation and prosody. To address this problem, we propose Period VITS, a novel end-to-end TTS model that incorporates an explicit periodicity generator. In the proposed method, we introduce a frame pitch predictor that predicts prosodic features, such as pitch and voicing flags, from the input text. From these features, the proposed periodicity generator produces a sample-level sinusoidal source that enables the waveform decoder to accurately reproduce the pitch. Finally, the entire model is jointly optimized in an end-to-end manner with variational inference and adversarial objectives. As a result, the decoder becomes capable of generating more stable, expressive, and natural output waveforms. The experimental results showed that the proposed model significantly outperforms baseline models in terms of naturalness, with improved pitch stability in the generated samples.