Goto

Collaborating Authors

 Son, Bokyung


DSAI: Unbiased and Interpretable Latent Feature Extraction for Data-Centric AI

arXiv.org Artificial Intelligence

Large language models (LLMs) often struggle to objectively identify latent characteristics in large datasets due to their reliance on pre-trained knowledge rather than actual data patterns. To address this data grounding issue, we propose Data Scientist AI (DSAI), a framework that enables unbiased and interpretable feature extraction through a multi-stage pipeline with quantifiable prominence metrics for evaluating extracted features. On synthetic datasets with known ground-truth features, DSAI demonstrates high recall in identifying expert-defined features while faithfully reflecting the underlying data. Applications on real-world datasets illustrate the framework's practical utility in uncovering meaningful patterns with minimal expert oversight, supporting use cases such as interpretable classification. The title of our paper is chosen from multiple candidates based on DSAI-generated criteria.


Navigating the Path of Writing: Outline-guided Text Generation with Large Language Models

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have significantly impacted the writing process, enabling collaborative content creation and enhancing productivity. However, generating high-quality, user-aligned text remains challenging. In this paper, we propose Writing Path, a framework that uses explicit outlines to guide LLMs in generating goal-oriented, high-quality pieces of writing. Our approach draws inspiration from structured writing planning and reasoning paths, focusing on capturing and reflecting user intentions throughout the writing process. We construct a diverse dataset from unstructured blog posts to benchmark writing performance and introduce a comprehensive evaluation framework assessing the quality of outlines and generated texts. Our evaluations with GPT-3.5-turbo, GPT-4, and HyperCLOVA X demonstrate that the Writing Path approach significantly enhances text quality according to both LLMs and human evaluations. This study highlights the potential of integrating writing-specific techniques into LLMs to enhance their ability to meet the diverse writing needs of users.


Empowering Sentence Encoders with Prompting and Label Retrieval for Zero-shot Text Classification

arXiv.org Artificial Intelligence

With contrastive pre-training, sentence encoders are generally optimized to locate semantically similar samples closer to each other in their embedding spaces. In this work, we focus on the potential of their embedding spaces to be readily adapted to zero-shot text classification, as semantically distinct samples are already well-separated. Our framework, RaLP (Retrieval augmented Label Prompts for sentence encoder), encodes prompted label candidates with a sentence encoder, then assigns the label whose prompt embedding has the highest similarity with the input text embedding. In order to compensate for the potentially poorly descriptive labels in their original format, RaLP retrieves sentences that are semantically similar to the original label prompt from external corpora and use them as additional pseudo-label prompts. RaLP achieves competitive or stronger performance than much larger baselines on various closed-set classification and multiple-choice QA datasets under zero-shot settings. We show that the retrieval component plays a pivotal role in RaLP's success, and its results are robustly attained regardless of verbalizer variations.


ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision

arXiv.org Machine Learning

Vision-and-Language Pretraining (VLP) has improved performance on various joint vision-and-language downstream tasks. Current approaches for VLP heavily rely on image feature extraction processes, most of which involve region supervisions (e.g., object detection) and the convolutional architecture (e.g., ResNet). Although disregarded in the literature, we find it problematic in terms of both (1) efficiency/speed, that simply extracting input features requires much more computation than the actual multimodal interaction steps; and (2) expressive power, as it is upper bounded to the expressive power of the visual encoder and its predefined visual vocabulary. In this paper, we present a minimal VLP model, Vision-and-Language Transformer (ViLT), monolithic in the sense that processing of visual inputs is drastically simplified to just the same convolution-free manner that we process textual inputs. We show that ViLT is up to 60 times faster than previous VLP models, yet with competitive or better downstream task performance.