Sompolinsky, H.
On-line Learning of Dichotomies
Barkai, N., Seung, H. S., Sompolinsky, H.
The performance of online algorithms for learning dichotomies is studied. In online learning, the number of examples P is equivalent to the learning time, since each example is presented only once. The learning curve, or generalization error as a function of P, depends on the schedule at which the learning rate is lowered.
On-line Learning of Dichotomies
Barkai, N., Seung, H. S., Sompolinsky, H.
The performance of online algorithms for learning dichotomies is studied. In online learning, thenumber of examples P is equivalent to the learning time, since each example is presented only once. The learning curve, or generalization error as a function of P, depends on the schedule at which the learning rate is lowered. For a target that is a perceptron rule, the learning curve of the perceptron algorithm can decrease as fast as p-1,if the schedule is optimized. If the target is not realizable by a perceptron, the perceptron algorithm does not generally converge to the solution with lowest generalization error.
On-line Learning of Dichotomies
Barkai, N., Seung, H. S., Sompolinsky, H.
The performance of online algorithms for learning dichotomies is studied. In online learning, the number of examples P is equivalent to the learning time, since each example is presented only once. The learning curve, or generalization error as a function of P, depends on the schedule at which the learning rate is lowered.
Spin-glass models of neural networks
Amit, D. | Gutfreund, H. | Sompolinsky, H.