Sommer, Lars
The 2nd Workshop on Maritime Computer Vision (MaCVi) 2024
Kiefer, Benjamin, Žust, Lojze, Kristan, Matej, Perš, Janez, Teršek, Matija, Wiliem, Arnold, Messmer, Martin, Yang, Cheng-Yen, Huang, Hsiang-Wei, Jiang, Zhongyu, Kuo, Heng-Cheng, Mei, Jie, Hwang, Jenq-Neng, Stadler, Daniel, Sommer, Lars, Huang, Kaer, Zheng, Aiguo, Chong, Weitu, Lertniphonphan, Kanokphan, Xie, Jun, Chen, Feng, Li, Jian, Wang, Zhepeng, Zedda, Luca, Loddo, Andrea, Di Ruberto, Cecilia, Vu, Tuan-Anh, Nguyen-Truong, Hai, Ha, Tan-Sang, Pham, Quan-Dung, Yeung, Sai-Kit, Feng, Yuan, Thien, Nguyen Thanh, Tian, Lixin, Kuan, Sheng-Yao, Ho, Yuan-Hao, Rodriguez, Angel Bueno, Carrillo-Perez, Borja, Klein, Alexander, Alex, Antje, Steiniger, Yannik, Sattler, Felix, Solano-Carrillo, Edgardo, Fabijanić, Matej, Šumunec, Magdalena, Kapetanović, Nadir, Michel, Andreas, Gross, Wolfgang, Weinmann, Martin
The 2nd Workshop on Maritime Computer Vision (MaCVi) 2024 addresses maritime computer vision for Unmanned Aerial Vehicles (UAV) and Unmanned Surface Vehicles (USV). Three challenges categories are considered: (i) UAV-based Maritime Object Tracking with Re-identification, (ii) USV-based Maritime Obstacle Segmentation and Detection, (iii) USV-based Maritime Boat Tracking. The USV-based Maritime Obstacle Segmentation and Detection features three sub-challenges, including a new embedded challenge addressing efficicent inference on real-world embedded devices. This report offers a comprehensive overview of the findings from the challenges. We provide both statistical and qualitative analyses, evaluating trends from over 195 submissions. All datasets, evaluation code, and the leaderboard are available to the public at https://macvi.org/workshop/macvi24.
1st Workshop on Maritime Computer Vision (MaCVi) 2023: Challenge Results
Kiefer, Benjamin, Kristan, Matej, Perš, Janez, Žust, Lojze, Poiesi, Fabio, Andrade, Fabio Augusto de Alcantara, Bernardino, Alexandre, Dawkins, Matthew, Raitoharju, Jenni, Quan, Yitong, Atmaca, Adem, Höfer, Timon, Zhang, Qiming, Xu, Yufei, Zhang, Jing, Tao, Dacheng, Sommer, Lars, Spraul, Raphael, Zhao, Hangyue, Zhang, Hongpu, Zhao, Yanyun, Augustin, Jan Lukas, Jeon, Eui-ik, Lee, Impyeong, Zedda, Luca, Loddo, Andrea, Di Ruberto, Cecilia, Verma, Sagar, Gupta, Siddharth, Muralidhara, Shishir, Hegde, Niharika, Xing, Daitao, Evangeliou, Nikolaos, Tzes, Anthony, Bartl, Vojtěch, Špaňhel, Jakub, Herout, Adam, Bhowmik, Neelanjan, Breckon, Toby P., Kundargi, Shivanand, Anvekar, Tejas, Desai, Chaitra, Tabib, Ramesh Ashok, Mudengudi, Uma, Vats, Arpita, Song, Yang, Liu, Delong, Li, Yonglin, Li, Shuman, Tan, Chenhao, Lan, Long, Somers, Vladimir, De Vleeschouwer, Christophe, Alahi, Alexandre, Huang, Hsiang-Wei, Yang, Cheng-Yen, Hwang, Jenq-Neng, Kim, Pyong-Kun, Kim, Kwangju, Lee, Kyoungoh, Jiang, Shuai, Li, Haiwen, Ziqiang, Zheng, Vu, Tuan-Anh, Nguyen-Truong, Hai, Yeung, Sai-Kit, Jia, Zhuang, Yang, Sophia, Hsu, Chih-Chung, Hou, Xiu-Yu, Jhang, Yu-An, Yang, Simon, Yang, Mau-Tsuen
The 1$^{\text{st}}$ Workshop on Maritime Computer Vision (MaCVi) 2023 focused on maritime computer vision for Unmanned Aerial Vehicles (UAV) and Unmanned Surface Vehicle (USV), and organized several subchallenges in this domain: (i) UAV-based Maritime Object Detection, (ii) UAV-based Maritime Object Tracking, (iii) USV-based Maritime Obstacle Segmentation and (iv) USV-based Maritime Obstacle Detection. The subchallenges were based on the SeaDronesSee and MODS benchmarks. This report summarizes the main findings of the individual subchallenges and introduces a new benchmark, called SeaDronesSee Object Detection v2, which extends the previous benchmark by including more classes and footage. We provide statistical and qualitative analyses, and assess trends in the best-performing methodologies of over 130 submissions. The methods are summarized in the appendix. The datasets, evaluation code and the leaderboard are publicly available at https://seadronessee.cs.uni-tuebingen.de/macvi.