Soman, Sumit
Evaluation of RAG Metrics for Question Answering in the Telecom Domain
Roychowdhury, Sujoy, Soman, Sumit, Ranjani, H G, Gunda, Neeraj, Chhabra, Vansh, Bala, Sai Krishna
Retrieval Augmented Generation (RAG) is widely used to enable Large Language Models (LLMs) perform Question Answering (QA) tasks in various domains. However, RAG based on open-source LLM for specialized domains has challenges of evaluating generated responses. A popular framework in the literature is the RAG Assessment (RAGAS), a publicly available library which uses LLMs for evaluation. One disadvantage of RAGAS is the lack of details of derivation of numerical value of the evaluation metrics. One of the outcomes of this work is a modified version of this package for few metrics (faithfulness, context relevance, answer relevance, answer correctness, answer similarity and factual correctness) through which we provide the intermediate outputs of the prompts by using any LLMs. Next, we analyse the expert evaluations of the output of the modified RAGAS package and observe the challenges of using it in the telecom domain. We also study the effect of the metrics under correct vs. wrong retrieval and observe that few of the metrics have higher values for correct retrieval. We also study for differences in metrics between base embeddings and those domain adapted via pre-training and fine-tuning. Finally, we comment on the suitability and challenges of using these metrics for in-the-wild telecom QA task.
A Compass for Navigating the World of Sentence Embeddings for the Telecom Domain
Roychowdhury, Sujoy, Soman, Sumit, Ranjani, H. G., Chhabra, Vansh, Gunda, Neeraj, Bandyopadhyay, Subhadip, Bala, Sai Krishna
A plethora of sentence embedding models makes it challenging to choose one, especially for domains such as telecom, rich with specialized vocabulary. We evaluate multiple embeddings obtained from publicly available models and their domain-adapted variants, on both point retrieval accuracies as well as their (95\%) confidence intervals. We establish a systematic method to obtain thresholds for similarity scores for different embeddings. We observe that fine-tuning improves mean bootstrapped accuracies as well as tightens confidence intervals. The pre-training combined with fine-tuning makes confidence intervals even tighter. To understand these variations, we analyse and report significant correlations between the distributional overlap between top-$K$, correct and random sentence similarities with retrieval accuracies and similarity thresholds. Following current literature, we analyze if retrieval accuracy variations can be attributed to isotropy of embeddings. Our conclusions are that isotropy of embeddings (as measured by two independent state-of-the-art isotropy metric definitions) cannot be attributed to better retrieval performance. However, domain adaptation which improves retrieval accuracies also improves isotropy. We establish that domain adaptation moves domain specific embeddings further away from general domain embeddings.
Observations on Building RAG Systems for Technical Documents
Soman, Sumit, Roychowdhury, Sujoy
Retrieval augmented generation (RAG) for technical documents creates challenges as embeddings do not often capture domain information. We review prior art for important factors affecting RAG and perform experiments to highlight best practices and potential challenges to build RAG systems for technical documents.
Observations on LLMs for Telecom Domain: Capabilities and Limitations
Soman, Sumit, G, Ranjani H
The landscape for building conversational interfaces (chatbots) has witnessed a paradigm shift with recent developments in generative Artificial Intelligence (AI) based Large Language Models (LLMs), such as ChatGPT by OpenAI (GPT3.5 and GPT4), Google's Bard, Large Language Model Meta AI (LLaMA), among others. In this paper, we analyze capabilities and limitations of incorporating such models in conversational interfaces for the telecommunication domain, specifically for enterprise wireless products and services. Using Cradlepoint's publicly available data for our experiments, we present a comparative analysis of the responses from such models for multiple use-cases including domain adaptation for terminology and product taxonomy, context continuity, robustness to input perturbations and errors. We believe this evaluation would provide useful insights to data scientists engaged in building customized conversational interfaces for domain-specific requirements.
An Online Learning Approach for Dengue Fever Classification
Srivastava, Siddharth, Soman, Sumit, Rai, Astha
This paper introduces a novel approach for dengue fever classification based on online learning paradigms. The proposed approach is suitable for practical implementation as it enables learning using only a few training samples. With time, the proposed approach is capable of learning incrementally from the data collected without need for retraining the model or redeployment of the prediction engine. Additionally, we also provide a comprehensive evaluation of machine learning methods for prediction of dengue fever. The input to the proposed pipeline comprises of recorded patient symptoms and diagnostic investigations. Offline classifier models have been employed to obtain baseline scores to establish that the feature set is optimal for classification of dengue. The primary benefit of the online detection model presented in the paper is that it has been established to effectively identify patients with high likelihood of dengue disease, and experiments on scalability in terms of number of training and test samples validate the use of the proposed model.
Effect of Various Regularizers on Model Complexities of Neural Networks in Presence of Input Noise
Sharma, Mayank, Yadav, Aayush, Soman, Sumit, Jayadeva, null
Deep neural networks are over-parameterized, which implies that the number of parameters are much larger than the number of samples used to train the network. Even in such a regime deep architectures do not overfit. This phenomenon is an active area of research and many theories have been proposed trying to understand this peculiar observation. These include the Vapnik Chervonenkis (VC) dimension bounds and Rademacher complexity bounds which show that the capacity of the network is characterized by the norm of weights rather than the number of parameters. However, the effect of input noise on these measures for shallow and deep architectures has not been studied. In this paper, we analyze the effects of various regularization schemes on the complexity of a neural network which we characterize with the loss, $L_2$ norm of the weights, Rademacher complexities (Directly Approximately Regularizing Complexity-DARC1), VC dimension based Low Complexity Neural Network (LCNN) when subject to varying degrees of Gaussian input noise. We show that $L_2$ regularization leads to a simpler hypothesis class and better generalization followed by DARC1 regularizer, both for shallow as well as deeper architectures. Jacobian regularizer works well for shallow architectures with high level of input noises. Spectral normalization attains highest test set accuracies both for shallow and deeper architectures. We also show that Dropout alone does not perform well in presence of input noise. Finally, we show that deeper architectures are robust to input noise as opposed to their shallow counterparts.
Radius-margin bounds for deep neural networks
Sharma, Mayank, Jayadeva, null, Soman, Sumit
Explaining the unreasonable effectiveness of deep learning has eluded researchers around the globe. Various authors have described multiple metrics to evaluate the capacity of deep architectures. In this paper, we allude to the radius margin bounds described for a support vector machine (SVM) with hinge loss, apply the same to the deep feed-forward architectures and derive the Vapnik-Chervonenkis (VC) bounds which are different from the earlier bounds proposed in terms of number of weights of the network. In doing so, we also relate the effectiveness of techniques like Dropout and Dropconnect in bringing down the capacity of the network. Finally, we describe the effect of maximizing the input as well as the output margin to achieve an input noise-robust deep architecture.
A Neurodynamical System for finding a Minimal VC Dimension Classifier
Jayadeva, null, Soman, Sumit, Bhaya, Amit
The recently proposed Minimal Complexity Machine (MCM) finds a hyperplane classifier by minimizing an exact bound on the Vapnik-Chervonenkis (VC) dimension. The VC dimension measures the capacity of a learning machine, and a smaller VC dimension leads to improved generalization. On many benchmark datasets, the MCM generalizes better than SVMs and uses far fewer support vectors than the number used by SVMs. In this paper, we describe a neural network based on a linear dynamical system, that converges to the MCM solution. The proposed MCM dynamical system is conducive to an analogue circuit implementation on a chip or simulation using Ordinary Differential Equation (ODE) solvers. Numerical experiments on benchmark datasets from the UCI repository show that the proposed approach is scalable and accurate, as we obtain improved accuracies and fewer number of support vectors (upto 74.3% reduction) with the MCM dynamical system.