Goto

Collaborating Authors

 Soltanshahi, Mohammad Ali


Deep Learning-based Sentiment Analysis in Persian Language

arXiv.org Artificial Intelligence

Recently, there has been a growing interest in the use of deep learning techniques for tasks in natural language processing (NLP), with sentiment analysis being one of the most challenging areas, particularly in the Persian language. The vast amounts of content generated by Persian users on thousands of websites, blogs, and social networks such as Telegram, Instagram, and Twitter present a rich resource of information. Deep learning techniques have become increasingly favored for extracting insights from this extensive pool of raw data, although they face several challenges. In this study, we introduced and implemented a hybrid deep learning-based model for sentiment analysis, using customer review data from the Digikala Online Retailer website. We employed a variety of deep learning networks and regularization techniques as classifiers. Ultimately, our hybrid approach yielded an impressive performance, achieving an F1 score of 78.3 across three sentiment categories: positive, negative, and neutral.


Distributed Record Linkage in Healthcare Data with Apache Spark

arXiv.org Artificial Intelligence

Healthcare data is a valuable resource for research, analysis, and decision-making in the medical field. However, healthcare data is often fragmented and distributed across various sources, making it challenging to combine and analyze effectively. Record linkage, also known as data matching, is a crucial step in integrating and cleaning healthcare data to ensure data quality and accuracy. Apache Spark, a powerful open-source distributed big data processing framework, provides a robust platform for performing record linkage tasks with the aid of its machine learning library. In this study, we developed a new distributed data-matching model based on the Apache Spark Machine Learning library. To ensure the correct functioning of our model, the validation phase has been performed on the training data. The main challenge is data imbalance because a large amount of data is labeled false, and a small number of records are labeled true. By utilizing SVM and Regression algorithms, our results demonstrate that research data was neither over-fitted nor under-fitted, and this shows that our distributed model works well on the data.


Extended Mixture of MLP Experts by Hybrid of Conjugate Gradient Method and Modified Cuckoo Search

arXiv.org Artificial Intelligence

This paper investigates a new method for improving the learning algorithm of Mixture of Experts (ME) model using a hybrid of Modified Cuckoo Search (MCS) and Conjugate Gradient (CG) as a second order optimization technique. The CG technique is combined with Back-Propagation (BP) algorithm to yield a much more efficient learning algorithm for ME structure. In addition, the experts and gating networks in enhanced model are replaced by CG based Multi-Layer Perceptrons (MLPs) to provide faster and more accurate learning. The CG is considerably depends on initial weights of connections of Artificial Neural Network (ANN), so, a metaheuristic algorithm, the so-called Modified Cuckoo Search is applied in order to select the optimal weights. The performance of proposed method is compared with Gradient Decent Based ME (GDME) and Conjugate Gradient Based ME (CGME) in classification and regression problems. The experimental results show that hybrid MSC and CG based ME (MCS-CGME) has faster convergence and better performance in utilized benchmark data sets.