Solowjow, Eugen
Robotic Automation in Apparel Manufacturing: A Novel Approach to Fabric Handling and Sewing
Ajith, Abhiroop, Narayanan, Gokul, Zornow, Jonathan, Calle, Carlos, Lugo, Auralis Herrero, Rincon, Jose Luis Susa, Wen, Chengtao, Solowjow, Eugen
Sewing garments using robots has consistently posed a research challenge due to the inherent complexities in fabric manipulation. In this paper, we introduce an intelligent robotic automation system designed to address this issue. By employing a patented technique that temporarily stiffens garments, we eliminate the traditional necessity for fabric modeling. Our methodological approach is rooted in a meticulously designed three-stage pipeline: first, an accurate pose estimation of the cut fabric pieces; second, a procedure to temporarily join fabric pieces; and third, a closed-loop visual servoing technique for the sewing process. Demonstrating versatility across various fabric types, our approach has been successfully validated in practical settings, notably with cotton material at the Bluewater Defense production line and denim material at Levi's research facility. The techniques described in this paper integrate robotic mechanisms with traditional sewing machines, devising a real-time sewing algorithm, and providing hands-on validation through a collaborative robot setup.
IIFL: Implicit Interactive Fleet Learning from Heterogeneous Human Supervisors
Datta, Gaurav, Hoque, Ryan, Gu, Anrui, Solowjow, Eugen, Goldberg, Ken
Imitation learning has been applied to a range of robotic tasks, but can struggle when robots encounter edge cases that are not represented in the training data (i.e., distribution shift). Interactive fleet learning (IFL) mitigates distribution shift by allowing robots to access remote human supervisors during task execution and learn from them over time, but different supervisors may demonstrate the task in different ways. Recent work proposes Implicit Behavior Cloning (IBC), which is able to represent multimodal demonstrations using energy-based models (EBMs). In this work, we propose Implicit Interactive Fleet Learning (IIFL), an algorithm that builds on IBC for interactive imitation learning from multiple heterogeneous human supervisors. A key insight in IIFL is a novel approach for uncertainty quantification in EBMs using Jeffreys divergence. While IIFL is more computationally expensive than explicit methods, results suggest that IIFL achieves a 2.8x higher success rate in simulation experiments and a 4.5x higher return on human effort in a physical block pushing task over (Explicit) IFL, IBC, and other baselines.
Verifiable Learned Behaviors via Motion Primitive Composition: Applications to Scooping of Granular Media
Benton, Andrew, Solowjow, Eugen, Akella, Prithvi
A robotic behavior model that can reliably generate behaviors from natural language inputs in real time would substantially expedite the adoption of industrial robots due to enhanced system flexibility. To facilitate these efforts, we construct a framework in which learned behaviors, created by a natural language abstractor, are verifiable by construction. Leveraging recent advancements in motion primitives and probabilistic verification, we construct a natural-language behavior abstractor that generates behaviors by synthesizing a directed graph over the provided motion primitives. If these component motion primitives are constructed according to the criteria we specify, the resulting behaviors are probabilistically verifiable. We demonstrate this verifiable behavior generation capacity in both simulation on an exploration task and on hardware with a robot scooping granular media.
Learning to Efficiently Plan Robust Frictional Multi-Object Grasps
Agboh, Wisdom C., Sharma, Satvik, Srinivas, Kishore, Parulekar, Mallika, Datta, Gaurav, Qiu, Tianshuang, Ichnowski, Jeffrey, Solowjow, Eugen, Dogar, Mehmet, Goldberg, Ken
We consider a decluttering problem where multiple rigid convex polygonal objects rest in randomly placed positions and orientations on a planar surface and must be efficiently transported to a packing box using both single and multi-object grasps. Prior work considered frictionless multi-object grasping. In this paper, we introduce friction to increase the number of potential grasps for a given group of objects, and thus increase picks per hour. We train a neural network using real examples to plan robust multi-object grasps. In physical experiments, we find a 13.7% increase in success rate, a 1.6x increase in picks per hour, and a 6.3x decrease in grasp planning time compared to prior work on multi-object grasping. Compared to single-object grasping, we find a 3.1x increase in picks per hour.
Can Machines Garden? Systematically Comparing the AlphaGarden vs. Professional Horticulturalists
Adebola, Simeon, Parikh, Rishi, Presten, Mark, Sharma, Satvik, Aeron, Shrey, Rao, Ananth, Mukherjee, Sandeep, Qu, Tomson, Wistrom, Christina, Solowjow, Eugen, Goldberg, Ken
The AlphaGarden is an automated testbed for indoor polyculture farming which combines a first-order plant simulator, a gantry robot, a seed planting algorithm, plant phenotyping and tracking algorithms, irrigation sensors and algorithms, and custom pruning tools and algorithms. In this paper, we systematically compare the performance of the AlphaGarden to professional horticulturalists on the staff of the UC Berkeley Oxford Tract Greenhouse. The humans and the machine tend side-by-side polyculture gardens with the same seed arrangement. We compare performance in terms of canopy coverage, plant diversity, and water consumption. Results from two 60-day cycles suggest that the automated AlphaGarden performs comparably to professional horticulturalists in terms of coverage and diversity, and reduces water consumption by as much as 44%. Code, videos, and datasets are available at https://sites.google.com/berkeley.edu/systematiccomparison.
Learning on the Job: Self-Rewarding Offline-to-Online Finetuning for Industrial Insertion of Novel Connectors from Vision
Nair, Ashvin, Zhu, Brian, Narayanan, Gokul, Solowjow, Eugen, Levine, Sergey
Learning-based methods in robotics hold the promise of generalization, but what can be done if a learned policy does not generalize to a new situation? In principle, if an agent can at least evaluate its own success (i.e., with a reward classifier that generalizes well even when the policy does not), it could actively practice the task and finetune the policy in this situation. We study this problem in the setting of industrial insertion tasks, such as inserting connectors in sockets and setting screws. Existing algorithms rely on precise localization of the connector or socket and carefully managed physical setups, such as assembly lines, to succeed at the task. But in unstructured environments such as homes or even some industrial settings, robots cannot rely on precise localization and may be tasked with previously unseen connectors. Offline reinforcement learning on a variety of connector insertion tasks is a potential solution, but what if the robot is tasked with inserting previously unseen connector? In such a scenario, we will still need methods that can robustly solve such tasks with online practice. One of the main observations we make in this work is that, with a suitable representation learning and domain generalization approach, it can be significantly easier for the reward function to generalize to a new but structurally similar task (e.g., inserting a new type of connector) than for the policy. This means that a learned reward function can be used to facilitate the finetuning of the robot's policy in situations where the policy fails to generalize in zero shot, but the reward function generalizes successfully. We show that such an approach can be instantiated in the real world, pretrained on 50 different connectors, and successfully finetuned to new connectors via the learned reward function. Videos can be viewed at https://sites.google.com/view/learningonthejob
Kit-Net: Self-Supervised Learning to Kit Novel 3D Objects into Novel 3D Cavities
Devgon, Shivin, Ichnowski, Jeffrey, Danielczuk, Michael, Brown, Daniel S., Balakrishna, Ashwin, Joshi, Shirin, Rocha, Eduardo M. C., Solowjow, Eugen, Goldberg, Ken
In industrial part kitting, 3D objects are inserted into cavities for transportation or subsequent assembly. Kitting is a critical step as it can decrease downstream processing and handling times and enable lower storage and shipping costs. We present Kit-Net, a framework for kitting previously unseen 3D objects into cavities given depth images of both the target cavity and an object held by a gripper in an unknown initial orientation. Kit-Net uses self-supervised deep learning and data augmentation to train a convolutional neural network (CNN) to robustly estimate 3D rotations between objects and matching concave or convex cavities using a large training dataset of simulated depth images pairs. Kit-Net then uses the trained CNN to implement a controller to orient and position novel objects for insertion into novel prismatic and conformal 3D cavities. Experiments in simulation suggest that Kit-Net can orient objects to have a 98.9% average intersection volume between the object mesh and that of the target cavity. Physical experiments with industrial objects succeed in 18% of trials using a baseline method and in 63% of trials with Kit-Net. Video, code, and data are available at https://github.com/BerkeleyAutomation/Kit-Net.
UniGrasp: Learning a Unified Model to Grasp with N-Fingered Robotic Hands
Shao, Lin, Ferreira, Fabio, Jorda, Mikael, Nambiar, Varun, Luo, Jianlan, Solowjow, Eugen, Ojea, Juan Aparicio, Khatib, Oussama, Bohg, Jeannette
To achieve a successful grasp, gripper attributes including geometry and kinematics play a role equally important to the target object geometry. The majority of previous work has focused on developing grasp methods that generalize over novel object geometry but are specific to a certain robot hand. We propose UniGrasp, an efficient data-driven grasp synthesis method that considers both the object geometry and gripper attributes as inputs. UniGrasp is based on a novel deep neural network architecture that selects sets of contact points from the input point cloud of the object. The proposed model is trained on a large dataset to produce contact points that are in force closure and reachable by the robot hand. By using contact points as output, we can transfer between a diverse set of N-fingered robotic hands. Our model produces over 90 percent valid contact points in Top10 predictions in simulation and more than 90 percent successful grasps in the real world experiments for various known two-fingered and three-fingered grippers. Our model also achieves 93 percent and 83 percent successful grasps in the real world experiments for a novel two-fingered and five-fingered anthropomorphic robotic hand, respectively.