Goto

Collaborating Authors

Solnon, Christine


A Global Constraint for the Exact Cover Problem: Application to Conceptual Clustering

Journal of Artificial Intelligence Research

We introduce the exactCover global constraint dedicated to the exact cover problem, the goal of which is to select subsets such that each element of a given set belongs to exactly one selected subset. This NP-complete problem occurs in many applications, and we more particularly focus on a conceptual clustering application. We introduce three propagation algorithms for exactCover, called Basic, DL, and DL+: Basic ensures the same level of consistency as arc consistency on a classical decomposition of exactCover into binary constraints, without using any specific data structure; DL ensures the same level of consistency as Basic but uses Dancing Links to efficiently maintain the relation between elements and subsets; and DL+ is a stronger propagator which exploits an extra property to filter more values than DL. We also consider the case where the number of selected subsets is constrained to be equal to a given integer variable k, and we show that this may be achieved either by combining exactCover with existing constraints, or by designing a specific propagator that integrates algorithms designed for the NValues constraint. These different propagators are experimentally evaluated on conceptual clustering problems, and they are compared with state-of-the-art declarative approaches. In particular, we show that our global constraint is competitive with recent ILP and CP models for mono-criterion problems, and it has better scale-up properties for multi-criteria problems.


Progressive Focus Search for the Static and Stochastic VRPTW with both Random Customers and Reveal Times

arXiv.org Artificial Intelligence

Static stochastic VRPs aim at modeling real-life VRPs by considering uncertainty on data. In particular, the SS-VRPTW-CR considers stochastic customers with time windows and does not make any assumption on their reveal times, which are stochastic as well. Based on customer request probabilities, we look for an a priori solution composed preventive vehicle routes, minimizing the expected number of unsatisfied customer requests at the end of the day. A route describes a sequence of strategic vehicle relocations, from which nearby requests can be rapidly reached. Instead of reoptimizing online, a so-called recourse strategy defines the way the requests are handled, whenever they appear. In this paper, we describe a new recourse strategy for the SS-VRPTW-CR, improving vehicle routes by skipping useless parts. We show how to compute the expected cost of a priori solutions, in pseudo-polynomial time, for this recourse strategy. We introduce a new meta-heuristic, called Progressive Focus Search (PFS), which may be combined with any local-search based algorithm for solving static stochastic optimization problems. PFS accelerates the search by using approximation factors: from an initial rough simplified problem, the search progressively focuses to the actual problem description. We evaluate our contributions on a new, real-world based, public benchmark.


When Subgraph Isomorphism is Really Hard, and Why This Matters for Graph Databases

Journal of Artificial Intelligence Research

The subgraph isomorphism problem involves deciding whether a copy of a pattern graph occurs inside a larger target graph. The non-induced version allows extra edges in the target, whilst the induced version does not. Although both variants are NP-complete, algorithms inspired by constraint programming can operate comfortably on many real-world problem instances with thousands of vertices. However, they cannot handle arbitrary instances of this size. We show how to generate "really hard" random instances for subgraph isomorphism problems, which are computationally challenging with a couple of hundred vertices in the target, and only twenty pattern vertices. For the non-induced version of the problem, these instances lie on a satisfiable / unsatisfiable phase transition, whose location we can predict; for the induced variant, much richer behaviour is observed, and constrainedness gives a better measure of difficulty than does proximity to a phase transition. These results have practical consequences: we explain why the widely researched "filter / verify" indexing technique used in graph databases is founded upon a misunderstanding of the empirical hardness of NP-complete problems, and cannot be beneficial when paired with any reasonable subgraph isomorphism algorithm.


A Multistage Stochastic Programming Approach to the Dynamic and Stochastic VRPTW - Extended version

arXiv.org Artificial Intelligence

We consider a dynamic vehicle routing problem with time windows and stochastic customers (DS-VRPTW), such that customers may request for services as vehicles have already started their tours. To solve this problem, the goal is to provide a decision rule for choosing, at each time step, the next action to perform in light of known requests and probabilistic knowledge on requests likelihood. We introduce a new decision rule, called Global Stochastic Assessment (GSA) rule for the DS-VRPTW, and we compare it with existing decision rules, such as MSA. In particular, we show that GSA fully integrates nonanticipativity constraints so that it leads to better decisions in our stochastic context. We describe a new heuristic approach for efficiently approximating our GSA rule. We introduce a new waiting strategy. Experiments on dynamic and stochastic benchmarks, which include instances of different degrees of dynamism, show that not only our approach is competitive with state-of-the-art methods, but also enables to compute meaningful offline solutions to fully dynamic problems where absolutely no a priori customer request is provided.