Goto

Collaborating Authors

 Solla, Sara


Statistical physics, Bayesian inference and neural information processing

arXiv.org Machine Learning

Lecture notes from the course given by Professor Sara A. Solla at the Les Houches summer school on "Statistical physics of Machine Learning". The notes discuss neural information processing through the lens of Statistical Physics. Contents include Bayesian inference and its connection to a Gibbs description of learning and generalization, Generalized Linear Models as a controlled alternative to backpropagation through time, and linear and non-linear techniques for dimensionality reduction.


Toward Next-Generation Artificial Intelligence: Catalyzing the NeuroAI Revolution

arXiv.org Artificial Intelligence

This implies that the bulk of the work in developing general AI can be achieved by building systems that match the perceptual and motor abilities of animals and that the subsequent step to human-level intelligence would be considerably smaller. This is good news because progress on the first goal can rely on the favored subjects of neuroscience research - rats, mice, and non-human primates - for which extensive and rapidly expanding behavioral and neural datasets can guide the way. Thus, we believe that the NeuroAI path will lead to necessary advances if we figure out the core capabilities that all animals possess in embodied sensorimotor interaction with the world. NeuroAI Grand Challenge: The Embodied Turing Test In 1950, Alan Turing proposed the "imitation game" as a test of a machine's ability to exhibit intelligent behavior indistinguishable from that of a human