Plotting

 Solin, Arno


Subtractive Mixture Models via Squaring: Representation and Learning

arXiv.org Artificial Intelligence

Mixture models are traditionally represented and learned by adding several distributions as components. Allowing mixtures to subtract probability mass or density can drastically reduce the number of components needed to model complex distributions. However, learning such subtractive mixtures while ensuring they still encode a non-negative function is challenging. We investigate how to learn and perform inference on deep subtractive mixtures by squaring them. We do this in the framework of probabilistic circuits, which enable us to represent tensorized mixtures and generalize several other subtractive models. We theoretically prove that the class of squared circuits allowing subtractions can be exponentially more expressive than traditional additive mixtures; and, we empirically show this increased expressiveness on a series of real-world distribution estimation tasks.


The Robust Semantic Segmentation UNCV2023 Challenge Results

arXiv.org Artificial Intelligence

This paper outlines the winning solutions employed in addressing the MUAD uncertainty quantification challenge held at ICCV 2023. The challenge was centered around semantic segmentation in urban environments, with a particular focus on natural adversarial scenarios. The report presents the results of 19 submitted entries, with numerous techniques drawing inspiration from cutting-edge uncertainty quantification methodologies presented at prominent conferences in the fields of computer vision and machine learning and journals over the past few years. Within this document, the challenge is introduced, shedding light on its purpose and objectives, which primarily revolved around enhancing the robustness of semantic segmentation in urban scenes under varying natural adversarial conditions. The report then delves into the top-performing solutions. Moreover, the document aims to provide a comprehensive overview of the diverse solutions deployed by all participants. By doing so, it seeks to offer readers a deeper insight into the array of strategies that can be leveraged to effectively handle the inherent uncertainties associated with autonomous driving and semantic segmentation, especially within urban environments.


Sparse Function-space Representation of Neural Networks

arXiv.org Machine Learning

Deep neural networks (NNs) are known to lack uncertainty estimates and struggle to incorporate new data. We present a method that mitigates these issues by converting NNs from weight space to function space, via a dual parameterization. Importantly, the dual parameterization enables us to formulate a sparse representation that captures information from the entire data set. This offers a compact and principled way of capturing uncertainty and enables us to incorporate new data without retraining whilst retaining predictive performance. We provide proof-of-concept demonstrations with the proposed approach for quantifying uncertainty in supervised learning on UCI benchmark tasks.


Improving Hyperparameter Learning under Approximate Inference in Gaussian Process Models

arXiv.org Artificial Intelligence

Approximate inference in Gaussian process (GP) models with non-conjugate likelihoods gets entangled with the learning of the model hyperparameters. We improve hyperparameter learning in GP models and focus on the interplay between variational inference (VI) and the learning target. While VI's lower bound to the marginal likelihood is a suitable objective for inferring the approximate posterior, we show that a direct approximation of the marginal likelihood as in Expectation Propagation (EP) is a better learning objective for hyperparameter optimization. We design a hybrid training procedure to bring the best of both worlds: it leverages conjugate-computation VI for inference and uses an EP-like marginal likelihood approximation for hyperparameter learning. We compare VI, EP, Laplace approximation, and our proposed training procedure and empirically demonstrate the effectiveness of our proposal across a wide range of data sets.


Rao-Blackwellized Particle Smoothing for Simultaneous Localization and Mapping

arXiv.org Artificial Intelligence

Simultaneous localization and mapping (SLAM) is the task of building a map representation of an unknown environment while it at the same time is used for positioning. A probabilistic interpretation of the SLAM task allows for incorporating prior knowledge and for operation under uncertainty. Contrary to the common practice of computing point estimates of the system states, we capture the full posterior density through approximate Bayesian inference. This dynamic learning task falls under state estimation, where the state-of-the-art is in sequential Monte Carlo methods that tackle the forward filtering problem. In this paper, we introduce a framework for probabilistic SLAM using particle smoothing that does not only incorporate observed data in current state estimates, but it also back-tracks the updated knowledge to correct for past drift and ambiguities in both the map and in the states. Our solution can efficiently handle both dense and sparse map representations by Rao-Blackwellization of conditionally linear and conditionally linearized models. We show through simulations and real-world experiments how the principles apply to radio (BLE/Wi-Fi), magnetic field, and visual SLAM. The proposed solution is general, efficient, and works well under confounding noise.


Memory-Based Dual Gaussian Processes for Sequential Learning

arXiv.org Artificial Intelligence

Sequential learning with Gaussian processes (GPs) is challenging when access to past data is limited, for example, in continual and active learning. In such cases, errors can accumulate over time due to inaccuracies in the posterior, hyperparameters, and inducing points, making accurate learning challenging. Here, we present a method to keep all such errors in check using the recently proposed dual sparse variational GP. Our method enables accurate inference for generic likelihoods and improves learning by actively building and updating a memory of past data. We demonstrate its effectiveness in several applications involving Bayesian optimization, active learning, and continual learning.


Generative Modelling With Inverse Heat Dissipation

arXiv.org Artificial Intelligence

While diffusion models have shown great success in image generation, their noise-inverting generative process does not explicitly consider the structure of images, such as their inherent multi-scale nature. Inspired by diffusion models and the empirical success of coarse-to-fine modelling, we propose a new diffusion-like model that generates images through stochastically reversing the heat equation, a PDE that locally erases fine-scale information when run over the 2D plane of the image. We interpret the solution of the forward heat equation with constant additive noise as a variational approximation in the diffusion latent variable model. Our new model shows emergent qualitative properties not seen in standard diffusion models, such as disentanglement of overall colour and shape in images. Spectral analysis on natural images highlights connections to diffusion models and reveals an implicit coarse-to-fine inductive bias in them. Diffusion models have recently become highly successful in generative modelling tasks (Ho et al., 2020; Song et al., 2021d; Dhariwal & Nichol, 2021). They are defined by a forward process that erases the original image information content and a reverse process that generates images iteratively. The forward and reverse processes of standard diffusion models do not explicitly consider the inductive biases of natural images, such as their multi-scale nature. In other successful generative modelling settings, such as in GANs (Goodfellow et al., 2014), taking multiple resolutions explicitly into account has resulted in dramatic improvements (Karras et al., 2018; 2021). This paper investigates how to incorporate the inductive biases of natural images, particularly their multi-resolution nature, into the generative sequence of diffusion-like iterative generative models. In classical computer vision, another approach is the so-called Gaussian scale-space (Iijima, 1962; Witkin, 1987; Babaud et al., 1986; Koenderink, 1984), where lower-resolution versions of an image are obtained by running the heat equation, a Similarly to subsampling, the heat equation Figure 1: Example of the forward process (during averages out the images and removes fine detail, training) and the generative inverse process but an arbitrary amount of effective resolutions is (for sample generation). Figure 2: Comparison of generation by generative denoising and inverse heat diffusion, where the focus of the forward process is in the pixel space in the left and the 2D image plane on the right. While scale-space has been utilized in the context of CNN architectures (Worrall & Welling, 2019; Pintea et al., 2021), it has not been considered in generative models.


Disentangling Model Multiplicity in Deep Learning

arXiv.org Artificial Intelligence

Model multiplicity is a well-known but poorly understood phenomenon that undermines the generalisation guarantees of machine learning models. It appears when two models with similar training-time performance differ in their predictions and real-world performance characteristics. This observed 'predictive' multiplicity (PM) also implies elusive differences in the internals of the models, their 'representational' multiplicity (RM). We introduce a conceptual and experimental setup for analysing RM by measuring activation similarity via singular vector canonical correlation analysis (SVCCA). We show that certain differences in training methods systematically result in larger RM than others and evaluate RM and PM over a finite sample as predictors for generalizability. We further correlate RM with PM measured by the variance in i.i.d. and out-of-distribution test predictions in four standard image data sets. Finally, instead of attempting to eliminate RM, we call for its systematic measurement and maximal exposure.


Non-separable Spatio-temporal Graph Kernels via SPDEs

arXiv.org Machine Learning

Gaussian processes (GPs) provide a principled and direct approach for inference and learning on graphs. However, the lack of justified graph kernels for spatio-temporal modelling has held back their use in graph problems. We leverage an explicit link between stochastic partial differential equations (SPDEs) and GPs on graphs, and derive non-separable spatio-temporal graph kernels that capture interaction across space and time. We formulate the graph kernels for the stochastic heat equation and wave equation. We show that by providing novel tools for spatio-temporal GP modelling on graphs, we outperform pre-existing graph kernels in real-world applications that feature diffusion, oscillation, and other complicated interactions.


Dual Parameterization of Sparse Variational Gaussian Processes

arXiv.org Machine Learning

Sparse variational Gaussian process (SVGP) methods are a common choice for non-conjugate Gaussian process inference because of their computational benefits. In this paper, we improve their computational efficiency by using a dual parameterization where each data example is assigned dual parameters, similarly to site parameters used in expectation propagation. Our dual parameterization speeds-up inference using natural gradient descent, and provides a tighter evidence lower bound for hyperparameter learning. The approach has the same memory cost as the current SVGP methods, but it is faster and more accurate.