Goto

Collaborating Authors

 Soliman, Sylvain


Graphical Conditions for the Existence, Unicity and Number of Regular Models

arXiv.org Artificial Intelligence

The regular models of a normal logic program are a particular type of partial (i.e. 3-valued) models which correspond to stable partial models with minimal undefinedness. In this paper, we explore graphical conditions on the dependency graph of a finite ground normal logic program to analyze the existence, unicity and number of regular models for the program. We show three main results: 1) a necessary condition for the existence of non-trivial (i.e. non-2-valued) regular models, 2) a sufficient condition for the unicity of regular models, and 3) two upper bounds for the number of regular models based on positive feedback vertex sets. The first two conditions generalize the finite cases of the two existing results obtained by You and Yuan (1994) for normal logic programs with well-founded stratification. The third result is also new to the best of our knowledge. Key to our proofs is a connection that we establish between finite ground normal logic programs and Boolean network theory.


Reactmine: a statistical search algorithm for inferring chemical reactions from time series data

arXiv.org Machine Learning

Inferring chemical reaction networks (CRN) from concentration time series is a challenge encouragedby the growing availability of quantitative temporal data at the cellular level. This motivates thedesign of algorithms to infer the preponderant reactions between the molecular species observed ina given biochemical process, and build CRN structure and kinetics models. Existing ODE-basedinference methods such as SINDy resort to least square regression combined with sparsity-enforcingpenalization, such as Lasso. However, we observe that these methods fail to learn sparse modelswhen the input time series are only available in wild type conditions, i.e. without the possibility toplay with combinations of zeroes in the initial conditions. We present a CRN inference algorithmwhich enforces sparsity by inferring reactions in a sequential fashion within a search tree of boundeddepth, ranking the inferred reaction candidates according to the variance of their kinetics on theirsupporting transitions, and re-optimizing the kinetic parameters of the CRN candidates on the wholetrace in a final pass. We show that Reactmine succeeds both on simulation data by retrievinghidden CRNs where SINDy fails, and on two real datasets, one of fluorescence videomicroscopyof cell cycle and circadian clock markers, the other one of biomedical measurements of systemiccircadian biomarkers possibly acting on clock gene expression in peripheral organs, by inferringpreponderant regulations in agreement with previous model-based analyses. The code is available athttps://gitlab.inria.fr/julmarti/crninf/ together with introductory notebooks.