Soleimani-Babakamali, Mohammad Hesam
Automatic Roof Type Classification Through Machine Learning for Regional Wind Risk Assessment
Meng, Shuochuan, Soleimani-Babakamali, Mohammad Hesam, Taciroglu, Ertugrul
Roof type is one of the most critical building characteristics for wind vulnerability modeling. It is also the most frequently missing building feature from publicly available databases. An automatic roof classification framework is developed herein to generate high-resolution roof-type data using machine learning. A Convolutional Neural Network (CNN) was trained to classify roof types using building-level satellite images. The model achieved an F1 score of 0.96 on predicting roof types for 1,000 test buildings. The CNN model was then used to predict roof types for 161,772 single-family houses in New Hanover County, NC, and Miami-Dade County, FL. The distribution of roof type in city and census tract scales was presented. A high variance was observed in the dominant roof type among census tracts. To improve the completeness of the roof-type data, imputation algorithms were developed to populate missing roof data due to low-quality images, using critical building attributes and neighborhood-level roof characteristics.
Zero-Shot Transfer Learning for Structural Health Monitoring using Generative Adversarial Networks and Spectral Mapping
Soleimani-Babakamali, Mohammad Hesam, Soleimani-Babakamali, Roksana, Nasrollahzadeh, Kourosh, Avci, Onur, Kiranyaz, Serkan, Taciroglu, Ertugrul
Gathering properly labelled, adequately rich, and case-specific data for successfully training a data-driven or hybrid model for structural health monitoring (SHM) applications is a challenging task. We posit that a Transfer Learning (TL) method that utilizes available data in any relevant source domain and directly applies to the target domain through domain adaptation can provide substantial remedies to address this issue. Accordingly, we present a novel TL method that differentiates between the source's no-damage and damage cases and utilizes a domain adaptation (DA) technique. The DA module transfers the accumulated knowledge in contrasting no-damage and damage cases in the source domain to the target domain, given only the target's no-damage case. High-dimensional features allow employing signal processing domain knowledge to devise a generalizable DA approach. The Generative Adversarial Network (GAN) architecture is adopted for learning since its optimization process accommodates high-dimensional inputs in a zero-shot setting. At the same time, its training objective conforms seamlessly with the case of no-damage and damage data in SHM since its discriminator network differentiates between real (no damage) and fake (possibly unseen damage) data. An extensive set of experimental results demonstrates the method's success in transferring knowledge on differences between no-damage and damage cases across three strongly heterogeneous independent target structures. The area under the Receiver Operating Characteristics curves (Area Under the Curve - AUC) is used to evaluate the differentiation between no-damage and damage cases in the target domain, reaching values as high as 0.95. With no-damage and damage cases discerned from each other, zero-shot structural damage detection is carried out. The mean F1 scores for all damages in the three independent datasets are 0.978, 0.992, and 0.975.