Sokolov, Alex
Joint Repetition Suppression and Content Moderation of Large Language Models
Zhang, Minghui, Sokolov, Alex, Cai, Weixin, Chen, Si-Qing
Natural language generation (NLG) is one of the most impactful fields in NLP, and recent years have witnessed its evolution brought about by large language models (LLMs). As the key instrument for writing assistance applications, they are generally prone to replicating or extending offensive content provided in the input. In low-resource data regime, they can also lead to repetitive outputs. Usually, offensive content and repetitions are mitigated with post-hoc methods, including n-gram level blocklists, top-k and nucleus sampling. In this paper, we apply non-exact repetition suppression using token and sequence level unlikelihood loss, and further explore the framework of unlikelihood training objective in order to jointly endow the model with abilities to avoid generating offensive words and phrases from the beginning. Finally, with comprehensive experiments, we demonstrate that our proposed methods work exceptionally in controlling the repetition and content quality of LLM outputs.
An Evaluation on Large Language Model Outputs: Discourse and Memorization
de Wynter, Adrian, Wang, Xun, Sokolov, Alex, Gu, Qilong, Chen, Si-Qing
We present an empirical evaluation of various outputs generated by nine of the most widely-available large language models (LLMs). Our analysis is done with off-the-shelf, readily-available tools. We find a correlation between percentage of memorized text, percentage of unique text, and overall output quality, when measured with respect to output pathologies such as counterfactual and logically-flawed statements, and general failures like not staying on topic. Overall, 80.0% of the outputs evaluated contained memorized data, but outputs containing the most memorized content were also more likely to be considered of high quality. We discuss and evaluate mitigation strategies, showing that, in the models evaluated, the rate of memorized text being output is reduced. We conclude with a discussion on potential implications around what it means to learn, to memorize, and to evaluate quality text.
Neural Machine Translation For Paraphrase Generation
Sokolov, Alex, Filimonov, Denis
Training a spoken language understanding system, as the one in Alexa, typically requires a large human-annotated corpus of data. Manual annotations are expensive and time consuming. In Alexa Skill Kit (ASK) user experience with the skill greatly depends on the amount of data provided by skill developer. In this work, we present an automatic natural language generation system, capable of generating both human-like interactions and annotations by the means of paraphrasing. Our approach consists of machine translation (MT) inspired encoder-decoder deep recurrent neural network. We evaluate our model on the impact it has on ASK skill, intent, named entity classification accuracy and sentence level coverage, all of which demonstrate significant improvements for unseen skills on natural language understanding (NLU) models, trained on the data augmented with paraphrases.