Soh, Jerrold
Discovering Significant Topics from Legal Decisions with Selective Inference
Soh, Jerrold
We propose and evaluate an automated pipeline for discovering significant topics from legal decision texts by passing features synthesized with topic models through penalised regressions and post-selection significance tests. The method identifies case topics significantly correlated with outcomes, topic-word distributions which can be manually-interpreted to gain insights about significant topics, and case-topic weights which can be used to identify representative cases for each topic. We demonstrate the method on a new dataset of domain name disputes and a canonical dataset of European Court of Human Rights violation cases. Topic models based on latent semantic analysis as well as language model embeddings are evaluated. We show that topics derived by the pipeline are consistent with legal doctrines in both areas and can be useful in other related legal analysis tasks.
Building Legal Datasets
Soh, Jerrold
Data-centric AI calls for better, not just bigger, datasets. As data protection laws with extra-territorial reach proliferate worldwide, ensuring datasets are legal is an increasingly crucial yet overlooked component of ``better''. To help dataset builders become more willing and able to navigate this complex legal space, this paper reviews key legal obligations surrounding ML datasets, examines the practical impact of data laws on ML pipelines, and offers a framework for building legal datasets.