Goto

Collaborating Authors

 Socher, Richard


Large Language Models: A Survey

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have drawn a lot of attention due to their strong performance on a wide range of natural language tasks, since the release of ChatGPT in November 2022. LLMs' ability of general-purpose language understanding and generation is acquired by training billions of model's parameters on massive amounts of text data, as predicted by scaling laws \cite{kaplan2020scaling,hoffmann2022training}. The research area of LLMs, while very recent, is evolving rapidly in many different ways. In this paper, we review some of the most prominent LLMs, including three popular LLM families (GPT, LLaMA, PaLM), and discuss their characteristics, contributions and limitations. We also give an overview of techniques developed to build, and augment LLMs. We then survey popular datasets prepared for LLM training, fine-tuning, and evaluation, review widely used LLM evaluation metrics, and compare the performance of several popular LLMs on a set of representative benchmarks. Finally, we conclude the paper by discussing open challenges and future research directions.


Evaluating State-of-the-Art Classification Models Against Bayes Optimality

arXiv.org Machine Learning

Evaluating the inherent difficulty of a given data-driven classification problem is important for establishing absolute benchmarks and evaluating progress in the field. To this end, a natural quantity to consider is the \emph{Bayes error}, which measures the optimal classification error theoretically achievable for a given data distribution. While generally an intractable quantity, we show that we can compute the exact Bayes error of generative models learned using normalizing flows. Our technique relies on a fundamental result, which states that the Bayes error is invariant under invertible transformation. Therefore, we can compute the exact Bayes error of the learned flow models by computing it for Gaussian base distributions, which can be done efficiently using Holmes-Diaconis-Ross integration. Moreover, we show that by varying the temperature of the learned flow models, we can generate synthetic datasets that closely resemble standard benchmark datasets, but with almost any desired Bayes error. We use our approach to conduct a thorough investigation of state-of-the-art classification models, and find that in some -- but not all -- cases, these models are capable of obtaining accuracy very near optimal. Finally, we use our method to evaluate the intrinsic "hardness" of standard benchmark datasets, and classes within those datasets.


Bridging Textual and Tabular Data for Cross-Domain Text-to-SQL Semantic Parsing

arXiv.org Artificial Intelligence

We present BRIDGE, a powerful sequential architecture for modeling dependencies between natural language questions and relational databases in cross-DB semantic parsing. BRIDGE represents the question and DB schema in a tagged sequence where a subset of the fields are augmented with cell values mentioned in the question. The hybrid sequence is encoded by BERT with minimal subsequent layers and the text-DB contextualization is realized via the fine-tuned deep attention in BERT. Combined with a pointer-generator decoder with schema-consistency driven search space pruning, BRIDGE attained state-of-the-art performance on popular cross-DB text-to-SQL benchmarks, Spider (71.1\% dev, 67.5\% test with ensemble model) and WikiSQL (92.6\% dev, 91.9\% test). Our analysis shows that BRIDGE effectively captures the desired cross-modal dependencies and has the potential to generalize to more text-DB related tasks. Our implementation is available at \url{https://github.com/salesforce/TabularSemanticParsing}.


Catastrophic Fisher Explosion: Early Phase Fisher Matrix Impacts Generalization

arXiv.org Machine Learning

The early phase of training has been shown to be important in two ways for deep neural networks. First, the degree of regularization in this phase significantly impacts the final generalization. Second, it is accompanied by a rapid change in the local loss curvature influenced by regularization choices. Connecting these two findings, we show that stochastic gradient descent (SGD) implicitly penalizes the trace of the Fisher Information Matrix (FIM) from the beginning of training. We argue it is an implicit regularizer in SGD by showing that explicitly penalizing the trace of the FIM can significantly improve generalization. We further show that the early value of the trace of the FIM correlates strongly with the final generalization. We highlight that in the absence of implicit or explicit regularization, the trace of the FIM can increase to a large value early in training, to which we refer as catastrophic Fisher explosion. Finally, to gain insight into the regularization effect of penalizing the trace of the FIM, we show that 1) it limits memorization by reducing the learning speed of examples with noisy labels more than that of the clean examples, and 2) trajectories with a low initial trace of the FIM end in flat minima, which are commonly associated with good generalization.


Discriminative Nearest Neighbor Few-Shot Intent Detection by Transferring Natural Language Inference

arXiv.org Artificial Intelligence

Intent detection is one of the core components of goal-oriented dialog systems, and detecting out-of-scope (OOS) intents is also a practically important skill. Few-shot learning is attracting much attention to mitigate data scarcity, but OOS detection becomes even more challenging. In this paper, we present a simple yet effective approach, discriminative nearest neighbor classification with deep self-attention. Unlike softmax classifiers, we leverage BERT-style pairwise encoding to train a binary classifier that estimates the best matched training example for a user input. We propose to boost the discriminative ability by transferring a natural language inference (NLI) model. Our extensive experiments on a large-scale multi-domain intent detection task show that our method achieves more stable and accurate in-domain and OOS detection accuracy than RoBERTa-based classifiers and embedding-based nearest neighbor approaches. More notably, the NLI transfer enables our 10-shot model to perform competitively with 50-shot or even full-shot classifiers, while we can keep the inference time constant by leveraging a faster embedding retrieval model.


Explaining Creative Artifacts

arXiv.org Artificial Intelligence

Human creativity is often described as the mental process of combining associative elements into a new form, but emerging computational creativity algorithms may not operate in this manner. Here we develop an inverse problem formulation to deconstruct the products of combinatorial and compositional creativity into associative chains as a form of post-hoc interpretation that matches the human creative process. In particular, our formulation is structured as solving a traveling salesman problem through a knowledge graph of associative elements. We demonstrate our approach using an example in explaining culinary computational creativity where there is an explicit semantic structure, and two examples in language generation where we either extract explicit concepts that map to a knowledge graph or we consider distances in a word embedding space. We close by casting the length of an optimal traveling salesman path as a measure of novelty in creativity.


Theory-Inspired Path-Regularized Differential Network Architecture Search

arXiv.org Machine Learning

Despite its high search efficiency, differential architecture search (DARTS) often selects network architectures with dominated skip connections which lead to performance degradation. However, theoretical understandings on this issue remain absent, hindering the development of more advanced methods in a principled way. In this work, we solve this problem by theoretically analyzing the effects of various types of operations, e.g. convolution, skip connection and zero operation, to the network optimization. We prove that the architectures with more skip connections can converge faster than the other candidates, and thus are selected by DARTS. This result, for the first time, theoretically and explicitly reveals the impact of skip connections to fast network optimization and its competitive advantage over other types of operations in DARTS. Then we propose a theory-inspired path-regularized DARTS that consists of two key modules: (i) a differential group-structured sparse binary gate introduced for each operation to avoid unfair competition among operations, and (ii) a path-depth-wise regularization used to incite search exploration for deep architectures that often converge slower than shallow ones as shown in our theory and are not well explored during the search. Experimental results on image classification tasks validate its advantages.


GraPPa: Grammar-Augmented Pre-Training for Table Semantic Parsing

arXiv.org Artificial Intelligence

We present GraPPa, an effective pre-training approach for table semantic parsing that learns a compositional inductive bias in the joint representations of textual and tabular data. We construct synthetic question-SQL pairs over high-quality tables via a synchronous context-free grammar (SCFG) induced from existing text-to-SQL datasets. We pre-train our model on the synthetic data using a novel text-schema linking objective that predicts the syntactic role of a table field in the SQL for each question-SQL pair. To maintain the model's ability to represent real-world data, we also include masked language modeling (MLM) over several existing table-and-language datasets to regularize the pre-training process. On four popular fully supervised and weakly supervised table semantic parsing benchmarks, GraPPa significantly outperforms RoBERTa-large as the feature representation layers and establishes new state-of-the-art results on all of them.


Photon: A Robust Cross-Domain Text-to-SQL System

arXiv.org Artificial Intelligence

Natural language interfaces to databases (NLIDB) democratize end user access to relational data. Due to fundamental differences between natural language communication and programming, it is common for end users to issue questions that are ambiguous to the system or fall outside the semantic scope of its underlying query language. We present Photon, a robust, modular, cross-domain NLIDB that can flag natural language input to which a SQL mapping cannot be immediately determined. Photon consists of a strong neural semantic parser (63.2\% structure accuracy on the Spider dev benchmark), a human-in-the-loop question corrector, a SQL executor and a response generator. The question corrector is a discriminative neural sequence editor which detects confusion span(s) in the input question and suggests rephrasing until a translatable input is given by the user or a maximum number of iterations are conducted. Experiments on simulated data show that the proposed method effectively improves the robustness of text-to-SQL system against untranslatable user input. The live demo of our system is available at http://naturalsql.com.


Towards Understanding Hierarchical Learning: Benefits of Neural Representations

arXiv.org Machine Learning

Deep neural networks can empirically perform efficient hierarchical learning, in which the layers learn useful representations of the data. However, how they make use of the intermediate representations are not explained by recent theories that relate them to "shallow learners" such as kernels. In this work, we demonstrate that intermediate neural representations add more flexibility to neural networks and can be advantageous over raw inputs. We consider a fixed, randomly initialized neural network as a representation function fed into another trainable network. When the trainable network is the quadratic Taylor model of a wide two-layer network, we show that neural representation can achieve improved sample complexities compared with the raw input: For learning a low-rank degree-$p$ polynomial ($p \geq 4$) in $d$ dimension, neural representation requires only $\tilde{O}(d^{\lceil p/2 \rceil})$ samples, while the best-known sample complexity upper bound for the raw input is $\tilde{O}(d^{p-1})$. We contrast our result with a lower bound showing that neural representations do not improve over the raw input (in the infinite width limit), when the trainable network is instead a neural tangent kernel. Our results characterize when neural representations are beneficial, and may provide a new perspective on why depth is important in deep learning.