Goto

Collaborating Authors

 Snopov, Pavel


Vulnerability Detection via Topological Analysis of Attention Maps

arXiv.org Artificial Intelligence

Recently, deep learning (DL) approaches to vulnerability detection have gained significant traction. These methods demonstrate promising results, often surpassing traditional static code analysis tools in effectiveness. In this study, we explore a novel approach to vulnerability detection utilizing the tools from topological data analysis (TDA) on the attention matrices of the BERT model. Our findings reveal that traditional machine learning (ML) techniques, when trained on the topological features extracted from these attention matrices, can perform competitively with pre-trained language models (LLMs) such as CodeBERTa. This suggests that TDA tools, including persistent homology, are capable of effectively capturing semantic information critical for identifying vulnerabilities.


Porosity and topological properties of triply periodic minimal surfaces

arXiv.org Machine Learning

Triple periodic minimal surfaces (TPMS) have garnered significant interest due to their structural efficiency and controllable geometry, making them suitable for a wide range of applications. This paper investigates the relationships between porosity and persistence entropy with the shape factor of TPMS. We propose conjectures suggesting that these relationships are polynomial in nature, derived through the application of machine learning techniques. This study exemplifies the integration of machine learning methodologies in pure mathematical research. Besides the conjectures, we provide the mathematical models that might have the potential implications for the design and modeling of TPMS structures in various practical applications.


ICML 2023 Topological Deep Learning Challenge : Design and Results

arXiv.org Artificial Intelligence

This paper presents the computational challenge on topological deep learning that was hosted within the ICML 2023 Workshop on Topology and Geometry in Machine Learning. The competition asked participants to provide open-source implementations of topological neural networks from the literature by contributing to the python packages TopoNetX (data processing) and TopoModelX (deep learning). The challenge attracted twenty-eight qualifying submissions in its two-month duration. This paper describes the design of the challenge and summarizes its main findings.