Smith, Trey
Semantic Masking and Visual Feature Matching for Robust Localization
Mao, Luisa, Soussan, Ryan, Coltin, Brian, Smith, Trey, Biswas, Joydeep
We are interested in long-term deployments of autonomous robots to aid astronauts with maintenance and monitoring operations in settings such as the International Space Station. Unfortunately, such environments tend to be highly dynamic and unstructured, and their frequent reconfiguration poses a challenge for robust long-term localization of robots. Many state-of-the-art visual feature-based localization algorithms are not robust towards spatial scene changes, and SLAM algorithms, while promising, cannot run within the low-compute budget available to space robots. To address this gap, we present a computationally efficient semantic masking approach for visual feature matching that improves the accuracy and robustness of visual localization systems during long-term deployment in changing environments. Our method introduces a lightweight check that enforces matches to be within long-term static objects and have consistent semantic classes. We evaluate this approach using both map-based relocalization and relative pose estimation and show that it improves Absolute Trajectory Error (ATE) and correct match ratios on the publicly available Astrobee dataset. While this approach was originally developed for microgravity robotic freeflyers, it can be applied to any visual feature matching pipeline to improve robustness.
Air-Ground Collaboration with SPOMP: Semantic Panoramic Online Mapping and Planning
Miller, Ian D., Cladera, Fernando, Smith, Trey, Taylor, Camillo Jose, Kumar, Vijay
Mapping and navigation have gone hand-in-hand since long before robots existed. Maps are a key form of communication, allowing someone who has never been somewhere to nonetheless navigate that area successfully. In the context of multi-robot systems, the maps and information that flow between robots are necessary for effective collaboration, whether those robots are operating concurrently, sequentially, or completely asynchronously. In this paper, we argue that maps must go beyond encoding purely geometric or visual information to enable increasingly complex autonomy, particularly between robots. We propose a framework for multi-robot autonomy, focusing in particular on air and ground robots operating in outdoor 2.5D environments. We show that semantic maps can enable the specification, planning, and execution of complex collaborative missions, including localization in GPS-denied settings. A distinguishing characteristic of this work is that we strongly emphasize field experiments and testing, and by doing so demonstrate that these ideas can work at scale in the real world. We also perform extensive simulation experiments to validate our ideas at even larger scales. We believe these experiments and the experimental results constitute a significant step forward toward advancing the state-of-the-art of large-scale, collaborative multi-robot systems operating with real communication, navigation, and perception constraints.
Multi-Agent 3D Map Reconstruction and Change Detection in Microgravity with Free-Flying Robots
Dinkel, Holly, Di, Julia, Santos, Jamie, Albee, Keenan, Borges, Paulo, Moreira, Marina, Alexandrov, Oleg, Coltin, Brian, Smith, Trey
Assistive free-flyer robots autonomously caring for future crewed outposts -- such as NASA's Astrobee robots on the International Space Station (ISS) -- must be able to detect day-to-day interior changes to track inventory, detect and diagnose faults, and monitor the outpost status. This work presents a framework for multi-agent cooperative mapping and change detection to enable robotic maintenance of space outposts. One agent is used to reconstruct a 3D model of the environment from sequences of images and corresponding depth information. Another agent is used to periodically scan the environment for inconsistencies against the 3D model. Change detection is validated after completing the surveys using real image and pose data collected by Astrobee robots in a ground testing environment and from microgravity aboard the ISS. This work outlines the objectives, requirements, and algorithmic modules for the multi-agent reconstruction system, including recommendations for its use by assistive free-flyers aboard future microgravity outposts. *Denotes Equal Contribution
Unsupervised Change Detection for Space Habitats Using 3D Point Clouds
Santos, Jamie, Dinkel, Holly, Di, Julia, Borges, Paulo V. K., Moreira, Marina, Alexandrov, Oleg, Coltin, Brian, Smith, Trey
This work presents an algorithm for scene change detection from point clouds to enable autonomous robotic caretaking in future space habitats. Autonomous robotic systems will help maintain future deep-space habitats, such as the Gateway space station, which will be uncrewed for extended periods. Existing scene analysis software used on the International Space Station (ISS) relies on manually-labeled images for detecting changes. In contrast, the algorithm presented in this work uses raw, unlabeled point clouds as inputs. The algorithm first applies modified Expectation-Maximization Gaussian Mixture Model (GMM) clustering to two input point clouds. It then performs change detection by comparing the GMMs using the Earth Mover's Distance. The algorithm is validated quantitatively and qualitatively using a test dataset collected by an Astrobee robot in the NASA Ames Granite Lab comprising single frame depth images taken directly by Astrobee and full-scene reconstructed maps built with RGB-D and pose data from Astrobee. The runtimes of the approach are also analyzed in depth. The source code is publicly released to promote further development.
An Investigation of Multi-feature Extraction and Super-resolution with Fast Microphone Arrays
Chang, Eric T., Wang, Runsheng, Ballentine, Peter, Xu, Jingxi, Smith, Trey, Coltin, Brian, Kymissis, Ioannis, Ciocarlie, Matei
In this work, we use MEMS microphones as vibration sensors to simultaneously classify texture and estimate contact position and velocity. Vibration sensors are an important facet of both human and robotic tactile sensing, providing fast detection of contact and onset of slip. Microphones are an attractive option for implementing vibration sensing as they offer a fast response and can be sampled quickly, are affordable, and occupy a very small footprint. Our prototype sensor uses only a sparse array of distributed MEMS microphones (8-9 mm spacing) embedded under an elastomer. We use transformer-based architectures for data analysis, taking advantage of the microphones' high sampling rate to run our models on time-series data as opposed to individual snapshots. This approach allows us to obtain 77.3% average accuracy on 4-class texture classification (84.2% when excluding the slowest drag velocity), 1.5 mm median error on contact localization, and 4.5 mm/s median error on contact velocity. We show that the learned texture and localization models are robust to varying velocity and generalize to unseen velocities. We also report that our sensor provides fast contact detection, an important advantage of fast transducers. This investigation illustrates the capabilities one can achieve with a MEMS microphone array alone, leaving valuable sensor real estate available for integration with complementary tactile sensing modalities.
Heuristic Search Value Iteration for POMDPs
Smith, Trey, Simmons, Reid
We present a novel POMDP planning algorithm called heuristic search value iteration (HSVI).HSVI is an anytime algorithm that returns a policy and a provable bound on its regret with respect to the optimal policy. HSVI gets its power by combining two well-known techniques: attention-focusing search heuristics and piecewise linear convex representations of the value function. HSVI's soundness and convergence have been proven. On some benchmark problems from the literature, HSVI displays speedups of greater than 100 with respect to other state-of-the-art POMDP value iteration algorithms. We also apply HSVI to a new rover exploration problem 10 times larger than most POMDP problems in the literature.
AAAI 2008 Workshop Reports
Anand, Sarabjot Singh (University of Warwick) | Bunescu, Razvan C. (Ohio University) | Carvalho, Vitor R. (Microsoft Live Labs) | Chomicki, Jan (University of Buffalo) | Conitzer, Vincent (Duke University) | Cox, Michael T. (BBN Technologies) | Dignum, Virginia (Utrecht University) | Dodds, Zachary (Harvey Mudd College) | Dredze, Mark (University of Pennsylvania) | Furcy, David (University of Wisconsin Oshkosh) | Gabrilovich, Evgeniy (Yahoo! Research) | Göker, Mehmet H. (PricewaterhouseCoopers) | Guesgen, Hans Werner (Massey University) | Hirsh, Haym (Rutgers University) | Jannach, Dietmar (Dortmund University of Technology) | Junker, Ulrich (ILOG) | Ketter, Wolfgang (Erasmus University) | Kobsa, Alfred (University of California, Irvine) | Koenig, Sven (University of Southern California) | Lau, Tessa (IBM Almaden Research Center) | Lewis, Lundy (Southern New Hampshire University) | Matson, Eric (Purdue University) | Metzler, Ted (Oklahoma City University) | Mihalcea, Rada (University of North Texas) | Mobasher, Bamshad (DePaul University) | Pineau, Joelle (McGill University) | Poupart, Pascal (University of Waterloo) | Raja, Anita (University of North Carolina at Charlotte) | Ruml, Wheeler (University of New Hampshire) | Sadeh, Norman M. (Carnegie Mellon University) | Shani, Guy (Microsoft Research) | Shapiro, Daniel (Applied Reactivity, Inc.) | Smith, Trey (Carnegie Mellon University West) | Taylor, Matthew E. (University of Southern California) | Wagstaff, Kiri (Jet Propulsion Laboratory) | Walsh, William (CombineNet) | Zhou, Ron (Palo Alto Research Center)
AAAI 2008 Workshop Reports
Anand, Sarabjot Singh (University of Warwick) | Bunescu, Razvan C. (Ohio University) | Carvalho, Vitor R. (Microsoft Live Labs) | Chomicki, Jan (University of Buffalo) | Conitzer, Vincent (Duke University) | Cox, Michael T. (BBN Technologies) | Dignum, Virginia (Utrecht University) | Dodds, Zachary (Harvey Mudd College) | Dredze, Mark (University of Pennsylvania) | Furcy, David (University of Wisconsin Oshkosh) | Gabrilovich, Evgeniy (Yahoo! Research) | Göker, Mehmet H. (PricewaterhouseCoopers) | Guesgen, Hans Werner (Massey University) | Hirsh, Haym (Rutgers University) | Jannach, Dietmar (Dortmund University of Technology) | Junker, Ulrich (ILOG) | Ketter, Wolfgang (Erasmus University) | Kobsa, Alfred (University of California, Irvine) | Koenig, Sven (University of Southern California) | Lau, Tessa (IBM Almaden Research Center) | Lewis, Lundy (Southern New Hampshire University) | Matson, Eric (Purdue University) | Metzler, Ted (Oklahoma City University) | Mihalcea, Rada (University of North Texas) | Mobasher, Bamshad (DePaul University) | Pineau, Joelle (McGill University) | Poupart, Pascal (University of Waterloo) | Raja, Anita (University of North Carolina at Charlotte) | Ruml, Wheeler (University of New Hampshire) | Sadeh, Norman M. (Carnegie Mellon University) | Shani, Guy (Microsoft Research) | Shapiro, Daniel (Applied Reactivity, Inc.) | Smith, Trey (Carnegie Mellon University West) | Taylor, Matthew E. (University of Southern California) | Wagstaff, Kiri (Jet Propulsion Laboratory) | Walsh, William (CombineNet) | Zhou, Ron (Palo Alto Research Center)
AAAI was pleased to present the AAAI-08 Workshop Program, held Sunday and Monday, July 13–14, in Chicago, Illinois, USA. The program included the following 15 workshops: Advancements in POMDP Solvers; AI Education Workshop Colloquium; Coordination, Organizations, Institutions, and Norms in Agent Systems, Enhanced Messaging; Human Implications of Human-Robot Interaction; Intelligent Techniques for Web Personalization and Recommender Systems; Metareasoning: Thinking about Thinking; Multidisciplinary Workshop on Advances in Preference Handling; Search in Artificial Intelligence and Robotics; Spatial and Temporal Reasoning; Trading Agent Design and Analysis; Transfer Learning for Complex Tasks; What Went Wrong and Why: Lessons from AI Research and Applications; and Wikipedia and Artificial Intelligence: An Evolving Synergy.