Smith, Stephen
Advancing MAPF towards the Real World: A Scalable Multi-Agent Realistic Testbed (SMART)
Yan, Jingtian, Li, Zhifei, Kang, William, Zhang, Yulun, Smith, Stephen, Li, Jiaoyang
MAPF focuses on planning collision-free paths for a group of agents. While state-of-the-art MAPF algorithms can plan paths for hundreds of robots in seconds, they often rely on simplified robot models, making their real-world performance unclear. Researchers typically lack access to hundreds of physical robots in laboratory settings to evaluate the algorithms. Meanwhile, industrial professionals who lack expertise in MAPF require an easy-to-use simulator to efficiently test and understand the performance of MAPF algorithms in their specific settings. SMART fills this gap with several advantages: (1) SMART uses a physics-engine-based simulator to create realistic simulation environments, accounting for complex real-world factors such as robot kinodynamics and execution uncertainties, (2) SMART uses an execution monitor framework based on the Action Dependency Graph, facilitating seamless integration with various MAPF algorithms and robot models, and (3) SMART scales to thousands of robots. In addition, we use SMART to explore and demonstrate research questions about the execution of MAPF algorithms in real-world scenarios. The code is publicly available at https://jingtianyan.github.io/
Coordinated Multi-Neighborhood Learning on a Directed Acyclic Graph
Smith, Stephen, Zhou, Qing
Learning the structure of causal directed acyclic graphs (DAGs) is useful in many areas of machine learning and artificial intelligence, with wide applications. However, in the high-dimensional setting, it is challenging to obtain good empirical and theoretical results without strong and often restrictive assumptions. Additionally, it is questionable whether all of the variables purported to be included in the network are observable. It is of interest then to restrict consideration to a subset of the variables for relevant and reliable inferences. In fact, researchers in various disciplines can usually select a set of target nodes in the network for causal discovery. This paper develops a new constraint-based method for estimating the local structure around multiple user-specified target nodes, enabling coordination in structure learning between neighborhoods. Our method facilitates causal discovery without learning the entire DAG structure. We establish consistency results for our algorithm with respect to the local neighborhood structure of the target nodes in the true graph. Experimental results on synthetic and real-world data show that our algorithm is more accurate in learning the neighborhood structures with much less computational cost than standard methods that estimate the entire DAG. An R package implementing our methods may be accessed at https://github.com/stephenvsmith/CML.
Learning and Utilizing Interaction Patterns among Neighborhood-Based Heuristics
Chuang, Chung-Yao (Carnegie Mellon University) | Smith, Stephen (Carnegie Mellon University)
This paper proposes a method for learning and utilizing potentially useful interaction patterns among neighborhood-based heuristics. It is built upon a previously proposed framework designed for facilitating the task of combining multiple neighborhood-based heuristics. Basically, an algorithm derived from this framework will operate by chaining the heuristics in a pipelined fashion. Conceptually, we can view this framework as an algorithmic template that contains two user-defined components: 1) the policy H for selecting heuristics, and 2) the policy L for choosing the length of the pipeline that chains the selected heuristics. In this paper, we will develop a method that automatically derives a policy H by analyzing the experience collected from running a baseline algorithm. This analysis will distill potentially useful patterns of interactions among heuristics, and give an estimate for the frequency of using each pattern. The empirical results on three problem domains show the effectiveness of the proposed approach.
Coping with Large Traffic Volumes in Schedule-Driven Traffic Signal Control
Hu, Hsu-Chieh (Carnegie Mellon University) | Smith, Stephen (Carnegie Mellon University)
Recent work in decentralized, schedule-driven traffic control has demonstrated the ability to significantly improve traffic flow efficiency in complex urban road networks. However, in situations where vehicle volumes increase to the point that the physical capacity of a road network reaches or exceeds saturation, it has been observed that the effectiveness of a schedule-driven approach begins to degrade, leading to progressively higher network congestion. In essence, the traffic control problem becomes less of a scheduling problem and more of a queue management problem in this circumstance. In this paper we propose a composite approach to real-time traffic control that uses sensed information on queue lengths to influence scheduling decisions and gracefully shift the signal control strategy to queue management in high volume/high congestion settings. Specifically, queue-length information is used to establish weights for the sensed vehicle clusters that must be scheduled through a given intersection at any point, and hence bias the wait time minimization calculation. To compute these weights, we develop a model in which successive movement phases are viewed as different states of an Ising model, and parameters quantify strength of interactions. To ensure scalability, queue information is only exchanged between direct neighbors and the asynchronous nature of local intersection scheduling is preserved. We demonstrate the potential of the approach through microscopic traffic simulation of a real-world road network, showing a 60% reduction in average wait times over the baseline schedule-driven approach in heavy traffic scenarios. We also report initial field test results, which show the ability to reduce queues during heavy traffic periods.
The Workshops at the Twentieth National Conference on Artificial Intelligence
Aliod, Diego Molla, Alonso, Eduardo, Bangalore, Srinivas, Beck, Joseph, Bhanu, Bir, Blythe, Jim, Boddy, Mark, Cesta, Amedeo, Grobelink, Marko, Hakkani-Tur, Dilek, Harabagiu, Sanda, Lege, Alain, McGuinness, Deborah L., Marsella, Stacy, Milic-Frayling, Natasha, Mladenic, Dunja, Oblinger, Dan, Rybski, Paul, Shvaiko, Pavel, Smith, Stephen, Srivastava, Biplav, Tejada, Sheila, Vilhjalmsson, Hannes, Thorisson, Kristinn, Tur, Gokhan, Vicedo, Jose Luis, Wache, Holger
The AAAI-05 workshops were held on Saturday and Sunday, July 9-10, in Pittsburgh, Pennsylvania. The thirteen workshops were Contexts and Ontologies: Theory, Practice and Applications, Educational Data Mining, Exploring Planning and Scheduling for Web Services, Grid and Autonomic Computing, Human Comprehensible Machine Learning, Inference for Textual Question Answering, Integrating Planning into Scheduling, Learning in Computer Vision, Link Analysis, Mobile Robot Workshop, Modular Construction of Humanlike Intelligence, Multiagent Learning, Question Answering in Restricted Domains, and Spoken Language Understanding.
The Workshops at the Twentieth National Conference on Artificial Intelligence
Aliod, Diego Molla, Alonso, Eduardo, Bangalore, Srinivas, Beck, Joseph, Bhanu, Bir, Blythe, Jim, Boddy, Mark, Cesta, Amedeo, Grobelink, Marko, Hakkani-Tur, Dilek, Harabagiu, Sanda, Lege, Alain, McGuinness, Deborah L., Marsella, Stacy, Milic-Frayling, Natasha, Mladenic, Dunja, Oblinger, Dan, Rybski, Paul, Shvaiko, Pavel, Smith, Stephen, Srivastava, Biplav, Tejada, Sheila, Vilhjalmsson, Hannes, Thorisson, Kristinn, Tur, Gokhan, Vicedo, Jose Luis, Wache, Holger
The AAAI-05 workshops were held on Saturday and Sunday, July 9-10, in Pittsburgh, Pennsylvania. The thirteen workshops were Contexts and Ontologies: Theory, Practice and Applications, Educational Data Mining, Exploring Planning and Scheduling for Web Services, Grid and Autonomic Computing, Human Comprehensible Machine Learning, Inference for Textual Question Answering, Integrating Planning into Scheduling, Learning in Computer Vision, Link Analysis, Mobile Robot Workshop, Modular Construction of Humanlike Intelligence, Multiagent Learning, Question Answering in Restricted Domains, and Spoken Language Understanding.