Smith, Joshua
TetraGrip: Sensor-Driven Multi-Suction Reactive Object Manipulation in Cluttered Scenes
Torrado, Paolo, Levin, Joshua, Grotz, Markus, Smith, Joshua
Warehouse robotic systems equipped with vacuum grippers must reliably grasp a diverse range of objects from densely packed shelves. However, these environments present significant challenges, including occlusions, diverse object orientations, stacked and obstructed items, and surfaces that are difficult to suction. We introduce \tetra, a novel vacuum-based grasping strategy featuring four suction cups mounted on linear actuators. Each actuator is equipped with an optical time-of-flight (ToF) proximity sensor, enabling reactive grasping. We evaluate \tetra in a warehouse-style setting, demonstrating its ability to manipulate objects in stacked and obstructed configurations. Our results show that our RL-based policy improves picking success in stacked-object scenarios by 22.86\% compared to a single-suction gripper. Additionally, we demonstrate that TetraGrip can successfully grasp objects in scenarios where a single-suction gripper fails due to physical limitations, specifically in two cases: (1) picking an object occluded by another object and (2) retrieving an object in a complex scenario. These findings highlight the advantages of multi-actuated, suction-based grasping in unstructured warehouse environments. The project website is available at: \href{https://tetragrip.github.io/}{https://tetragrip.github.io/}.
OptiGrasp: Optimized Grasp Pose Detection Using RGB Images for Warehouse Picking Robots
Atar, Soofiyan, Li, Yi, Grotz, Markus, Wolf, Michael, Fox, Dieter, Smith, Joshua
In warehouse environments, robots require robust picking capabilities to manage a wide variety of objects. Effective deployment demands minimal hardware, strong generalization to new products, and resilience in diverse settings. Current methods often rely on depth sensors for structural information, which suffer from high costs, complex setups, and technical limitations. Inspired by recent advancements in computer vision, we propose an innovative approach that leverages foundation models to enhance suction grasping using only RGB images. Trained solely on a synthetic dataset, our method generalizes its grasp prediction capabilities to real-world robots and a diverse range of novel objects not included in the training set. Our network achieves an 82.3\% success rate in real-world applications. The project website with code and data will be available at http://optigrasp.github.io.
Electrostatic Brakes Enable Individual Joint Control of Underactuated, Highly Articulated Robots
Lancaster, Patrick, Mavrogiannis, Christoforos, Srinivasa, Siddhartha, Smith, Joshua
Highly articulated organisms serve as blueprints for incredibly dexterous mechanisms, but building similarly capable robotic counterparts has been hindered by the difficulties of developing electromechanical actuators with both the high strength and compactness of biological muscle. We develop a stackable electrostatic brake that has comparable specific tension and weight to that of muscles and integrate it into a robotic joint. Compared to electromechanical motors, our brake-equipped joint is four times lighter and one thousand times more power efficient while exerting similar holding torques. Our joint design enables a ten degree-of-freedom robot equipped with only one motor to manipulate multiple objects simultaneously. We also show that the use of brakes allows a two-fingered robot to perform in-hand re-positioning of an object 45% more quickly and with 53% lower positioning error than without brakes. Relative to fully actuated robots, our findings suggest that robots equipped with such electrostatic brakes will have lower weight, volume, and power consumption yet retain the ability to reach arbitrary joint configurations.
Hierarchical Control Strategy for Moving A Robot Manipulator Between Small Containers
Torrado, Paolo, Yang, Boling, Smith, Joshua
Abstract-- In this paper, we study the implementation of a model predictive controller (MPC) for the task of object manipulation in a highly uncertain environment (e.g., picking objects from a semi-flexible array of densely packed bins). As a real-time perception-driven feedback controller, MPC is robust to the uncertainties in this environment. However, our experiment shows MPC cannot control a robot to complete a sequence of motions in a heavily occluded environment due to its myopic nature. It will benefit from adding a high-level policy that adaptively adjusts the optimization problem for MPC. Transferring objects between small containers is a popular robotic manipulation task, and it is particularly common in warehouse manipulation settings.