Goto

Collaborating Authors

 Smith, Jessie


Privacy-Aware Recommender Systems Challenge on Twitter's Home Timeline

arXiv.org Machine Learning

Recommender systems constitute the core engine of most social network platforms nowadays, aiming to maximize user satisfaction along with other key business objectives. Twitter is no exception. Despite the fact that Twitter data has been extensively used to understand socioeconomic and political phenomena and user behaviour, the implicit feedback provided by users on Tweets through their engagements on the Home Timeline has only been explored to a limited extent. At the same time, there is a lack of large-scale public social network datasets that would enable the scientific community to both benchmark and build more powerful and comprehensive models that tailor content to user interests. By releasing an original dataset of 160 million Tweets along with engagement information, Twitter aims to address exactly that. During this release, special attention is drawn on maintaining compliance with existing privacy laws. Apart from user privacy, this paper touches on the key challenges faced by researchers and professionals striving to predict user engagements. It further describes the key aspects of the RecSys 2020 Challenge that was organized by ACM RecSys in partnership with Twitter using this dataset.


Investigating Potential Factors Associated with Gender Discrimination in Collaborative Recommender Systems

AAAI Conferences

The proliferation of personalized recommendation technologies has raised concerns about discrepancies in their recommendation performance across different genders, age groups, and racial or ethnic populations. This varying degree of performance could impact users’ trust in the system and may pose legal and ethical issues in domains where fairness and equity are critical concerns, like job recommendation. In this paper, we investigate several potential factors that could be associated with discriminatory performance of a recommendation algorithm for women versus men. We specifically study several characteristics of user profiles and analyze their possible associations with disparate behavior of the system towards different genders. These characteristics include the anomaly in rating behavior, the entropy of users’ profiles, and the users’ profile size. Our experimental results on a public dataset using four recommendation algorithms show that, based on all the three mentioned factors, women get less accurate recommendations than men indicating an unfair nature of recommendation algorithms across genders.