Smith, Eric Michael
The Root Shapes the Fruit: On the Persistence of Gender-Exclusive Harms in Aligned Language Models
Ovalle, Anaelia, Pavasovic, Krunoslav Lehman, Martin, Louis, Zettlemoyer, Luke, Smith, Eric Michael, Williams, Adina, Sagun, Levent
Content Warning: This paper contains examples of offensive transphobic content. Natural-language assistants are designed to provide users with helpful responses while avoiding harmful outputs, largely achieved through alignment to human preferences. Yet there is limited understanding of whether alignment techniques may inadvertently perpetuate or even amplify harmful biases inherited from their pre-aligned base models. This issue is compounded by the choice of bias evaluation benchmarks in popular preference-finetuned models, which predominantly focus on dominant social categories, such as binary gender, thereby limiting insights into biases affecting underrepresented groups. Towards addressing this gap, we center transgender, nonbinary, and other gender-diverse identities to investigate how alignment procedures interact with pre-existing gender-diverse bias in LLMs. Our key contributions include: 1) a comprehensive survey of bias evaluation modalities across leading preference-finetuned LLMs, highlighting critical gaps in genderdiverse representation, 2) systematic evaluation of gender-diverse biases across 12 models spanning Direct Preference Optimization (DPO) stages, uncovering harms popular bias benchmarks fail to detect, and 3) a flexible framework for measuring harmful biases in implicit reward signals applicable to other social contexts. Our findings reveal that DPO-aligned models are particularly sensitive to supervised finetuning (SFT), and can amplify two forms of real-world gender-diverse harms from their base models: stigmatization and gender non-affirmative language. We conclude with recommendations tailored to DPO and broader alignment practices, advocating for the adoption of community-informed bias evaluation frameworks to more effectively identify and address underrepresented harms in LLMs.
Persistent Pre-Training Poisoning of LLMs
Zhang, Yiming, Rando, Javier, Evtimov, Ivan, Chi, Jianfeng, Smith, Eric Michael, Carlini, Nicholas, Tramรจr, Florian, Ippolito, Daphne
Large language models are pre-trained on uncurated text datasets consisting of trillions of tokens scraped from the Web. Prior work has shown that: (1) web-scraped pre-training datasets can be practically poisoned by malicious actors; and (2) adversaries can compromise language models after poisoning fine-tuning datasets. Our work evaluates for the first time whether language models can also be compromised during pre-training, with a focus on the persistence of pre-training attacks after models are fine-tuned as helpful and harmless chatbots (i.e., after SFT and DPO). We pre-train a series of LLMs from scratch to measure the impact of a potential poisoning adversary under four different attack objectives (denial-of-service, belief manipulation, jailbreaking, and prompt stealing), and across a wide range of model sizes (from 600M to 7B). Our main result is that poisoning only 0.1% of a model's pre-training dataset is sufficient for three out of four attacks to measurably persist through post-training. Moreover, simple attacks like denial-of-service persist through post-training with a poisoning rate of only 0.001%.
Backtracking Improves Generation Safety
Zhang, Yiming, Chi, Jianfeng, Nguyen, Hailey, Upasani, Kartikeya, Bikel, Daniel M., Weston, Jason, Smith, Eric Michael
Text generation has a fundamental limitation almost by definition: there is no taking back tokens that have been generated, even when they are clearly problematic. In the context of language model safety, when a partial unsafe generation is produced, language models by their nature tend to happily keep on generating similarly unsafe additional text. This is in fact how safety alignment of frontier models gets circumvented in the wild (Andriushchenko et al., 2024), despite great efforts in improving their safety. Deviating from the paradigm of approaching safety alignment as prevention (decreasing the probability of harmful responses), we propose backtracking, a technique that allows language models to "undo" and recover from their own unsafe generation through the introduction of a special Our method can be incorporated into either SFT or DPO training to optimize helpfulness and harmlessness. We show that models trained to backtrack are consistently safer than baseline models: backtracking Llama-3-8B is four times more safe than the baseline model (6.1% 1.5%) in our evaluations without regression in helpfulness. Our method additionally provides protection against four adversarial attacks including an adaptive attack, despite not being trained to do so. Remarkable progress has been recently made in building capable and helpful large language models (Touvron et al., 2023). As capabilities become more powerful, these models also have more potential to cause real societal harms (Kumar et al., 2023). The de facto standard in safety alignment focuses on prevention: training language models to generate safe responses while minimizing the likelihood of unsafe ones, through techniques including SFT (Ouyang et al., 2022) and RLHF (Christiano et al., 2017). Prevention-based safety tuning goes a long way towards building safe language models (Bai et al., 2022a), and yet the safety of production models which have undergone substantial safety tuning (e.g., Claude 3.5 and GPT-4) can still be compromised in the wild by simple attacks (Andriushchenko et al., 2024). The core challenge of safety alignment seems to be that the attack surface induced by a text interface is practically infinite, and model developers have to rely on the generalization of safe behavior from a relatively small (often predominantly in English) safety tuning dataset to prevent every failure case.
Towards Safety and Helpfulness Balanced Responses via Controllable Large Language Models
Tuan, Yi-Lin, Chen, Xilun, Smith, Eric Michael, Martin, Louis, Batra, Soumya, Celikyilmaz, Asli, Wang, William Yang, Bikel, Daniel M.
As large language models (LLMs) become easily accessible nowadays, the trade-off between safety and helpfulness can significantly impact user experience. A model that prioritizes safety will cause users to feel less engaged and assisted while prioritizing helpfulness will potentially cause harm. Possible harms include teaching people how to build a bomb, exposing youth to inappropriate content, and hurting users' mental health. In this work, we propose to balance safety and helpfulness in diverse use cases by controlling both attributes in LLM. We explore training-free and fine-tuning methods that do not require extra human annotations and analyze the challenges of controlling safety and helpfulness in LLMs. Our experiments demonstrate that our method can rewind a learned model and unlock its controllability.
ROBBIE: Robust Bias Evaluation of Large Generative Language Models
Esiobu, David, Tan, Xiaoqing, Hosseini, Saghar, Ung, Megan, Zhang, Yuchen, Fernandes, Jude, Dwivedi-Yu, Jane, Presani, Eleonora, Williams, Adina, Smith, Eric Michael
As generative large language models (LLMs) grow more performant and prevalent, we must develop comprehensive enough tools to measure and improve their fairness. Different prompt-based datasets can be used to measure social bias across multiple text domains and demographic axes, meaning that testing LLMs on more datasets can potentially help us characterize their biases more fully, and better ensure equal and equitable treatment of marginalized demographic groups. In this work, our focus is two-fold: (1) Benchmarking: a comparison of 6 different prompt-based bias and toxicity metrics across 12 demographic axes and 5 families of generative LLMs. Out of those 6 metrics, AdvPromptSet and HolisticBiasR are novel datasets proposed in the paper. The comparison of those benchmarks gives us insights about the bias and toxicity of the compared models. Therefore, we explore the frequency of demographic terms in common LLM pre-training corpora and how this may relate to model biases. (2) Mitigation: we conduct a comprehensive study of how well 3 bias/toxicity mitigation techniques perform across our suite of measurements. ROBBIE aims to provide insights for practitioners while deploying a model, emphasizing the need to not only measure potential harms, but also understand how they arise by characterizing the data, mitigate harms once found, and balance any trade-offs. We open-source our analysis code in hopes of encouraging broader measurements of bias in future LLMs.
The Gender-GAP Pipeline: A Gender-Aware Polyglot Pipeline for Gender Characterisation in 55 Languages
Muller, Benjamin, Alastruey, Belen, Hansanti, Prangthip, Kalbassi, Elahe, Ropers, Christophe, Smith, Eric Michael, Williams, Adina, Zettlemoyer, Luke, Andrews, Pierre, Costa-jussร , Marta R.
Gender biases in language generation systems are challenging to mitigate. One possible source for these biases is gender representation disparities in the training and evaluation data. Despite recent progress in documenting this problem and many attempts at mitigating it, we still lack shared methodology and tooling to report gender representation in large datasets. Such quantitative reporting will enable further mitigation, e.g., via data augmentation. This paper describes the Gender-GAP Pipeline (for Gender-Aware Polyglot Pipeline), an automatic pipeline to characterize gender representation in large-scale datasets for 55 languages. The pipeline uses a multilingual lexicon of gendered person-nouns to quantify the gender representation in text. We showcase it to report gender representation in WMT training data and development data for the News task, confirming that current data is skewed towards masculine representation. Having unbalanced datasets may indirectly optimize our systems towards outperforming one gender over the others. We suggest introducing our gender quantification pipeline in current datasets and, ideally, modifying them toward a balanced representation.
Llama 2: Open Foundation and Fine-Tuned Chat Models
Touvron, Hugo, Martin, Louis, Stone, Kevin, Albert, Peter, Almahairi, Amjad, Babaei, Yasmine, Bashlykov, Nikolay, Batra, Soumya, Bhargava, Prajjwal, Bhosale, Shruti, Bikel, Dan, Blecher, Lukas, Ferrer, Cristian Canton, Chen, Moya, Cucurull, Guillem, Esiobu, David, Fernandes, Jude, Fu, Jeremy, Fu, Wenyin, Fuller, Brian, Gao, Cynthia, Goswami, Vedanuj, Goyal, Naman, Hartshorn, Anthony, Hosseini, Saghar, Hou, Rui, Inan, Hakan, Kardas, Marcin, Kerkez, Viktor, Khabsa, Madian, Kloumann, Isabel, Korenev, Artem, Koura, Punit Singh, Lachaux, Marie-Anne, Lavril, Thibaut, Lee, Jenya, Liskovich, Diana, Lu, Yinghai, Mao, Yuning, Martinet, Xavier, Mihaylov, Todor, Mishra, Pushkar, Molybog, Igor, Nie, Yixin, Poulton, Andrew, Reizenstein, Jeremy, Rungta, Rashi, Saladi, Kalyan, Schelten, Alan, Silva, Ruan, Smith, Eric Michael, Subramanian, Ranjan, Tan, Xiaoqing Ellen, Tang, Binh, Taylor, Ross, Williams, Adina, Kuan, Jian Xiang, Xu, Puxin, Yan, Zheng, Zarov, Iliyan, Zhang, Yuchen, Fan, Angela, Kambadur, Melanie, Narang, Sharan, Rodriguez, Aurelien, Stojnic, Robert, Edunov, Sergey, Scialom, Thomas
In this work, we develop and release Llama 2, a collection of pretrained and fine-tuned large language models (LLMs) ranging in scale from 7 billion to 70 billion parameters. Our fine-tuned LLMs, called Llama 2-Chat, are optimized for dialogue use cases. Our models outperform open-source chat models on most benchmarks we tested, and based on our human evaluations for helpfulness and safety, may be a suitable substitute for closed-source models. We provide a detailed description of our approach to fine-tuning and safety improvements of Llama 2-Chat in order to enable the community to build on our work and contribute to the responsible development of LLMs.
Improving Open Language Models by Learning from Organic Interactions
Xu, Jing, Ju, Da, Lane, Joshua, Komeili, Mojtaba, Smith, Eric Michael, Ung, Megan, Behrooz, Morteza, Ngan, William, Moritz, Rashel, Sukhbaatar, Sainbayar, Boureau, Y-Lan, Weston, Jason, Shuster, Kurt
We present BlenderBot 3x, an update on the conversational model BlenderBot 3, which is now trained using organic conversation and feedback data from participating users of the system in order to improve both its skills and safety. We are publicly releasing the participating de-identified interaction data for use by the research community, in order to spur further progress. Training models with organic data is challenging because interactions with people "in the wild" include both high quality conversations and feedback, as well as adversarial and toxic behavior. We study techniques that enable learning from helpful teachers while avoiding learning from people who are trying to trick the model into unhelpful or toxic responses. BlenderBot 3x is both preferred in conversation to BlenderBot 3, and is shown to produce safer responses in challenging situations. While our current models are still far from perfect, we believe further improvement can be achieved by continued use of the techniques explored in this work.
Human Evaluation of Conversations is an Open Problem: comparing the sensitivity of various methods for evaluating dialogue agents
Smith, Eric Michael, Hsu, Orion, Qian, Rebecca, Roller, Stephen, Boureau, Y-Lan, Weston, Jason
At the heart of improving conversational AI is the open problem of how to evaluate conversations. Issues with automatic metrics are well known (Liu et al., 2016, arXiv:1603.08023), with human evaluations still considered the gold standard. Unfortunately, how to perform human evaluations is also an open problem: differing data collection methods have varying levels of human agreement and statistical sensitivity, resulting in differing amounts of human annotation hours and labor costs. In this work we compare five different crowdworker-based human evaluation methods and find that different methods are best depending on the types of models compared, with no clear winner across the board. While this highlights the open problems in the area, our analysis leads to advice of when to use which one, and possible future directions.
Multi-Modal Open-Domain Dialogue
Shuster, Kurt, Smith, Eric Michael, Ju, Da, Weston, Jason
Recent work in open-domain conversational agents has demonstrated that significant improvements in model engagingness and humanness metrics can be achieved via massive scaling in both pre-training data and model size (Adiwardana et al., 2020; Roller et al., 2020). However, if we want to build agents with human-like abilities, we must expand beyond handling just text. A particularly important topic is the ability to see images and communicate about what is perceived. With the goal of engaging humans in multi-modal dialogue, we investigate combining components from state-of-the-art open-domain dialogue agents with those from state-of-the-art vision models. We study incorporating different image fusion schemes and domain-adaptive pre-training and fine-tuning strategies, and show that our best resulting model outperforms strong existing models in multi-modal dialogue while simultaneously performing as well as its predecessor (text-only) BlenderBot (Roller et al., 2020) in text-based conversation. We additionally investigate and incorporate safety components in our final model, and show that such efforts do not diminish model performance with respect to engagingness metrics.